已知向量,其中x∈R,
(1)當時,求x值的集合;
(2)設函數(shù),求f(x)的最小正周期及其單調增區(qū)間.
【答案】分析:(1)通過時,利用兩角和的余弦函數(shù),化簡函數(shù)為 一個角的一個三角函數(shù)的形式,然后求x值的集合;
(2)通過,利用兩角和與差的三角函數(shù)的化簡函數(shù)的表達式,直接求f(x)的最小正周期及其單調增區(qū)間.
解答:解:(1)∵=
=coscos-sinsin
=cos2x=
∴2x=2kπ±,
x=kπ±,k∈Z.
(2)∵=(cos,sin
∴f(x)=(cos2+(sin2=5-2cos+2sin
5+4(cos+sin)=5+4sin(),
所以函數(shù)的最小正周期為:T==
因為2kπ-≤2kπ+,k∈Z,
時,函數(shù)5+4sin()單調遞增,
則函數(shù)f(x)的單調增區(qū)間為,k∈Z}.
點評:此題考查了三角函數(shù)的周期,單調增區(qū)間的求法,涉及的知識有,向量的數(shù)量積的應用,兩角和與差的正弦、余弦函數(shù)公式,以及正弦函數(shù)的單調性,其中利用三角函數(shù)的恒等變形把函數(shù)解析式化為一個角的三角函數(shù)是解此類題的關鍵.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:2012-2013學年河南省周口市項城二中高三(上)第三次月考數(shù)學試卷(文科)(解析版) 題型:解答題

已知向量,其中x∈R,
(1)當時,求x值的集合;
(2)設函數(shù),求f(x)的最小正周期及其單調增區(qū)間.

查看答案和解析>>

科目:高中數(shù)學 來源:2012-2013學年湖南省衡陽八中高三(上)第二次月考試卷試卷(理科)(解析版) 題型:解答題

已知向量,其中x∈R,
(1)當時,求x值的集合;
(2)設函數(shù),求f(x)的最小正周期及其單調增區(qū)間.

查看答案和解析>>

科目:高中數(shù)學 來源:2012年山東省實驗中學高考數(shù)學三模試卷(文科)(解析版) 題型:解答題

已知向量,其中x∈R,
(1)當時,求x值的集合;
(2)設函數(shù),求f(x)的最小正周期及其單調增區(qū)間.

查看答案和解析>>

科目:高中數(shù)學 來源:2012年山東省實驗中學高考數(shù)學三模試卷(理科)(解析版) 題型:解答題

已知向量,其中x∈R,
(1)當時,求x值的集合;
(2)設函數(shù),求f(x)的最小正周期及其單調增區(qū)間.

查看答案和解析>>

同步練習冊答案