求函數(shù)y=x2在矩陣M=變換作用下的解析式.

 

y=x2

【解析】設(shè)函數(shù)y=x2圖象上一點(diǎn)(x,y)M對應(yīng)變換的作用下變?yōu)?/span>(x',y'),==x=x',y=4y',代入y=x2,y'=x'2,y=x2.

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)全程總復(fù)習(xí)課時(shí)提升作業(yè)三十三第五章第四節(jié)練習(xí)卷(解析版) 題型:解答題

{an}是首項(xiàng)為-2的等比數(shù)列,Sn是其前n項(xiàng)和,S3,S2,S4成等差數(shù)列,

(1)求數(shù)列{an}的通項(xiàng)公式.

(2)bn=log2|an|,求數(shù)列{}的前n項(xiàng)和Tn.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)全程總復(fù)習(xí)課時(shí)提升作業(yè)三十一第五章第二節(jié)練習(xí)卷(解析版) 題型:填空題

{an}為等差數(shù)列,a15=8,a60=20,a75=    .

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)全程總復(fù)習(xí)課時(shí)提升作業(yè)七十第十章第七節(jié)練習(xí)卷(解析版) 題型:選擇題

設(shè)兩個(gè)獨(dú)立事件AB都不發(fā)生的概率為,A發(fā)生B不發(fā)生的概率與B發(fā)生A不發(fā)生的概率相同,則事件A發(fā)生的概率P(A)(  )

(A) (B) (C) (D)

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)全程總復(fù)習(xí)課時(shí)提升作業(yè)七十四選修4-2第一節(jié)練習(xí)卷(解析版) 題型:解答題

如果曲線x2+4xy+3y2=12×2矩陣的作用下變換為曲線x2-y2=1,試求a+b的值.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)全程總復(fù)習(xí)課時(shí)提升作業(yè)七十六選修4-2第三節(jié)練習(xí)卷(解析版) 題型:解答題

已知2×2矩陣M=有特征值λ=-1及對應(yīng)的一個(gè)特征向量e1=.

(1)求矩陣M.

(2)設(shè)曲線C在矩陣M的作用下得到的方程為x2+2y2=1,求曲線C的方程.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)全程總復(fù)習(xí)課時(shí)提升作業(yè)七十六選修4-2第三節(jié)練習(xí)卷(解析版) 題型:解答題

已知2×2矩陣A有特征值λ1=3及其對應(yīng)的一個(gè)特征向量α1=,特征值λ2=-1及其對應(yīng)的一個(gè)特征向量α2=,求矩陣A的逆矩陣A-1.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)全程總復(fù)習(xí)課時(shí)提升作業(yè)七十五選修4-2第二節(jié)練習(xí)卷(解析版) 題型:解答題

求使等式=M成立的矩陣M.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)全程總復(fù)習(xí)課時(shí)提升作業(yè)七十七選修4-4第一節(jié)練習(xí)卷(解析版) 題型:解答題

在直角坐標(biāo)系xOy,O為極點(diǎn),x軸非負(fù)半軸為極軸建立極坐標(biāo)系,曲線C的極坐標(biāo)方程為ρcos(θ-)=1,M,N分別為Cx,y軸的交點(diǎn).

(1)寫出C的直角坐標(biāo)方程,并求M,N的極坐標(biāo).

(2)設(shè)MN的中點(diǎn)為P,求直線OP的極坐標(biāo)方程.

 

查看答案和解析>>

同步練習(xí)冊答案