以直角坐標系的原點為極點O,軸正半軸為極軸,已知點P的直角坐標為(1,-5),點C的極坐標為,若直線l經(jīng)過點P,且傾斜角為,圓C的半徑為4.
(1).求直線l的參數(shù)方程及圓C的極坐標方程;
(2).試判斷直線l與圓C有位置關(guān)系.

(1),;(2)直線與圓相離.

解析試題分析:本題主要考查直線的參數(shù)方程、極坐標方程、點到直線的距離公式、直線與圓的位置關(guān)系等基礎(chǔ)知識,意在考查考生的運算求解能力、推理論證能力以及轉(zhuǎn)化思想的應用.第一問,利用已知條件列出直線的參數(shù)方程,利用極坐標與直角坐標的轉(zhuǎn)化公式,得到點C的直角坐標,從而得到圓C的標準方程,再利用極坐標與直角坐標的轉(zhuǎn)化公式得到圓C的極坐標方程;第二問,將直線的參數(shù)方程先轉(zhuǎn)化成普通方程,利用點到直線的距離公式求出距離,與半徑比較大小,來判斷直線與圓的位置關(guān)系.
試題解析:(1)直線的參數(shù)方程,即為參數(shù))
由題知點的直角坐標為,圓半徑為,
∴圓方程為代入
得圓極坐標方程   5分
(2)由題意得,直線的普通方程為,
圓心的距離為
∴直線與圓相離.   10分
考點:直線的參數(shù)方程、極坐標方程、點到直線的距離公式、直線與圓的位置關(guān)系.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:解答題

如圖,為保護河上古橋OA,規(guī)劃建一座新橋BC,同時設立一個圓形保護區(qū).規(guī)劃要求:新橋BC與河岸AB垂直;保護區(qū)的邊界為圓心M在線段OA上并與BC相切的圓,且古橋兩端O和A到該圓上任意一點的距離均不少于80m.經(jīng)測量,點A位于點O正北方向60m處,點C位于點O正東方向170m處(OC為河岸),.以所在直線為軸,以所在直線為軸建立平面直角坐標系.
(Ⅰ)求所在直線的方程及新橋BC的長;
(Ⅱ)當OM多長時,圓形保護區(qū)的面積最大?
并求此時圓的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖所示,已知D為△ABC的BC邊上一點,⊙O1經(jīng)過點B、D交AB于另一點E,⊙O2經(jīng)過點C、D交AC于另一點F,⊙O1與⊙O2交于點G.

(1)求證:∠EAG=∠EFG;
(2)若⊙O2的半徑為5,圓心O2到直線AC的距離為3,AC=10,AG切⊙O2于G,求線段AG的長.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

在平面直角坐標系中,如圖,已知橢圓E:的左、右頂點分別為、,上、下頂點分別為、.設直線的傾斜角的正弦值為,圓與以線段為直徑的圓關(guān)于直線對稱.

(1)求橢圓E的離心率;
(2)判斷直線與圓的位置關(guān)系,并說明理由;
(3)若圓的面積為,求圓的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

在平面直角坐標系中,已知點在圓內(nèi),動直線過點且交圓兩點,若△ABC的面積的最大值為,則實數(shù)的取值范圍為      

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知以點為圓心的圓與直線相切,過點的動直線與圓相交于兩點.
(1)求圓的方程;
(2)當時,求直線的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知以點為圓心的圓經(jīng)過點,且圓心在直線上.
(1)求圓的方程;
(2)設點在圓上,求的面積的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知點A(-3,0),B(3,0),動點P滿足|PA|=2|PB|.
(1)若點P的軌跡為曲線C,求此曲線的方程;
(2)若點Q在直線l1xy+3=0上,直線l2經(jīng)過點Q且與曲線C只有一個公共點M,求|QM|的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

P(x,y)在圓C:(x-1)2+(y-1)2=1上移動,試求x2+y2的最小值.

查看答案和解析>>

同步練習冊答案