【題目】已知函數(shù).
(Ⅰ)若曲線在點(diǎn)處的切線經(jīng)過點(diǎn)(0,1),求實數(shù)的值;
(Ⅱ)求證:當(dāng)時,函數(shù)至多有一個極值點(diǎn);
【答案】(Ⅰ)(Ⅱ)見證明
【解析】
(Ⅰ)利用導(dǎo)數(shù)的幾何意義求實數(shù)a的值;(Ⅱ)對a分兩種情況討論,利用導(dǎo)數(shù)證明函數(shù)至多有一個極值點(diǎn).
解:(Ⅰ)由,得
所以,.
所以由得.
(Ⅱ)證明:當(dāng)時,
當(dāng)時,,函數(shù)在上單調(diào)遞增,無極值;
當(dāng)時,令,則.
由得,
則①當(dāng),即時,,在上單調(diào)遞減,
所以在上至多有一個零點(diǎn),即在上至多有一個零點(diǎn).
所以函數(shù)在上至多有一個極值點(diǎn).
②當(dāng),即時,及隨的變化情況如下表:
x | |||
+ | 0 | - | |
極大值 |
因為,
所以在上至多有一個零點(diǎn),即在上至多有一個零點(diǎn).
所以函數(shù)在上至多有一個極值點(diǎn).
綜上,當(dāng)時,函數(shù)在定義域上至多有一個極值點(diǎn)
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(Ⅰ)求函數(shù)在處的切線方程;
(Ⅱ)若對任意的,恒成立,求的取值范圍;
(Ⅲ)當(dāng)時,設(shè)函數(shù).證明:對于任意的,函數(shù)有且只有一個零點(diǎn).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在三棱錐中,,,,,分別是,的中點(diǎn),在上且.
(I)求證:;
(II)求直線與平面所成角的正弦值;
(III)在線段上是否存在點(diǎn),使二面角的大小為?若存在,求出的長;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】英語老師要求學(xué)生從星期一到星期四每天學(xué)習(xí)3個英語單詞:每周五對一周內(nèi)所學(xué)單詞隨機(jī)抽取若干個進(jìn)行檢測(一周所學(xué)的單詞每個被抽到的可能性相同)
(1)英語老師隨機(jī)抽了個單詞進(jìn)行檢測,求至少有個是后兩天學(xué)習(xí)過的單詞的概率;
(2)某學(xué)生對后兩天所學(xué)過的單詞每個能默寫對的概率為,對前兩天所學(xué)過的單詞每個能默寫對的概率為,若老師從后三天所學(xué)單詞中各抽取一個進(jìn)行檢測,求該學(xué)生能默寫對的單詞的個數(shù)的分布列和期望。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐P﹣ABCD中,PA⊥平面ABCD,底面ABCD是菱形,點(diǎn)O是對角線AC與BD的交點(diǎn),AB=2,∠BAD=60°,M是PD的中點(diǎn).
(Ⅰ)求證:OM∥平面PAB;
(Ⅱ)平面PBD⊥平面PAC;
(Ⅲ)當(dāng)三棱錐C﹣PBD的體積等于 時,求PA的長.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】對于頂點(diǎn)在原點(diǎn)的拋物線,給出下列條件:
①焦點(diǎn)在y軸上;
②焦點(diǎn)在x軸上
③拋物線上橫坐標(biāo)為1的點(diǎn)到焦點(diǎn)的距離等于6;
④拋物線的過焦點(diǎn)且垂直于對稱軸的弦的長為5;
⑤由原點(diǎn)向過焦點(diǎn)的某條直線作垂線,垂足坐標(biāo)為(2,1)
能使拋物線方程為y2=10x的條件是_____.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列的前n項和, 是等差數(shù)列,且.
(Ⅰ)求數(shù)列的通項公式;
(Ⅱ)令.求數(shù)列的前n項和.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】美國制裁中興,未來7年一顆芯片都不賣,這卻激發(fā)了中國“芯”的研究熱潮.某公司甲,乙,丙三個研發(fā)小組分別研發(fā),,三種不同的芯片,現(xiàn)在用分層抽樣的方法從這些芯片中抽取若干件進(jìn)行質(zhì)量分析,有關(guān)數(shù)據(jù)見下表(單位:件).
芯片 | 數(shù)量 | 抽取件數(shù) |
200 | ||
600 | ||
400 | 2 |
(Ⅰ)求的值;
(Ⅱ)若在這抽出的樣品中隨機(jī)抽取2件送往某機(jī)構(gòu)進(jìn)行進(jìn)一步檢測,求這2件芯片來自不同種類的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】橢圓中心為坐標(biāo)原點(diǎn)O,對稱軸為坐標(biāo)軸,且過M(2, ) ,N(,1)兩點(diǎn),
(I)求橢圓的方程;
(II)是否存在圓心在原點(diǎn)的圓,使得該圓的任意一條切線與橢圓C恒有兩個交點(diǎn)A,B,且?若存在,寫出該圓的方程,并求|AB |的取值范圍,若不存在說明理由。
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com