已知函數(shù)上可導,且,
比較大。  __ 

試題分析:因為,,所以,,,即,
=23,=-23,故填。
點評:簡單題,注意到是常數(shù),因此,由,可求得。
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:填空題

若函數(shù)上可導,,則 ______;

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

函數(shù)
(1)若,證明;
(2)若不等式都恒成立,求實數(shù)的取值范圍。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

已知函數(shù)的兩個極值點分別為x1,x2,且x1Î(0, 1),x2Î(1, +¥),記分別以m,n為橫、縱坐標的點P(m,n)表示的平面區(qū)域為D,若函數(shù)的圖象上存在區(qū)域D內(nèi)的點,則實數(shù)a的取值范圍為(    )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

設函數(shù)。
(1)求函數(shù)的最小值;
(2)設,討論函數(shù)的單調(diào)性;
(3)斜率為的直線與曲線交于,兩點,求證:

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知函數(shù).()
(1)當時,試確定函數(shù)在其定義域內(nèi)的單調(diào)性;
(2)求函數(shù)上的最小值;
(3)試證明:.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知函數(shù)
(1)當時,求函數(shù)在上的最大值和最小值;
(2)討論函數(shù)的單調(diào)性;
(3)若函數(shù)處取得極值,不等式恒成立,求實數(shù)的取值范圍。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

曲線處的切線方程為        .

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

函數(shù)的導數(shù)是(  )
A.B.C.D.

查看答案和解析>>

同步練習冊答案