【題目】設(shè)函數(shù)f(x)= x3﹣ x2+bx+c,曲線y=f(x)在點(diǎn)(0,f(0))處的切線方程為y=1.
(1)求b,c的值;
(2)若a>0,求函數(shù)f(x)的單調(diào)區(qū)間.
【答案】
(1)解:函數(shù)的定義域?yàn)椋ī仭蓿?∞),f′(x)=x2﹣ax+b,
由題意得 即
(2)解:由(1)得,f′(x)=x2﹣ax=x(x﹣a)(a>0),
當(dāng)x∈(﹣∞,0)時(shí),f′(x)>0,當(dāng)x∈(0,a)時(shí),f′(x)<0,
當(dāng)x∈(a,+∞)時(shí),f′(x)>0.
所以函數(shù)f(x)的單調(diào)遞增區(qū)間為(﹣∞,0),(a,+∞),單調(diào)遞減區(qū)間為(0,a).
【解析】(1)求出函數(shù)的導(dǎo)數(shù),得到關(guān)于b,c的方程組,解出即可;(2)求出函數(shù)的導(dǎo)數(shù),解關(guān)于導(dǎo)函數(shù)的不等式,求出函數(shù)的單調(diào)區(qū)間即可.
【考點(diǎn)精析】關(guān)于本題考查的利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,需要了解一般的,函數(shù)的單調(diào)性與其導(dǎo)數(shù)的正負(fù)有如下關(guān)系: 在某個(gè)區(qū)間內(nèi),(1)如果,那么函數(shù)在這個(gè)區(qū)間單調(diào)遞增;(2)如果,那么函數(shù)在這個(gè)區(qū)間單調(diào)遞減才能得出正確答案.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在△ABC中,A、B、C是三角形的三內(nèi)角,a、b、c是三內(nèi)角對(duì)應(yīng)的三邊,已知b2 , a2 , c2成等差數(shù)列.
(1)求cosA的最小值;
(2)若a=2,當(dāng)A最大時(shí),△ABC面積的最大值?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)g(x)=a﹣x2( ≤x≤e,e為自然對(duì)數(shù)的底數(shù))與h(x)=2lnx的圖象上存在關(guān)于x軸對(duì)稱的點(diǎn),則實(shí)數(shù)a的取值范圍是( )
A.[1, +2]
B.[1,e2﹣2]
C.[ +2,e2﹣2]
D.[e2﹣2,+∞)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】為了考查某廠2000名工人的生產(chǎn)技能情況,隨機(jī)抽查了該廠n名工人某天的產(chǎn)量(單位:件),整理后得到如下的頻率分布直方圖(產(chǎn)品數(shù)量的分組區(qū)間為[10,15),[15,20),[20,25),[25,30),[30,35]),其中產(chǎn)量在[20,25)的工人有6名.
(Ⅰ)求這一天產(chǎn)量不小于25的工人人數(shù);
(Ⅱ)工廠規(guī)定從產(chǎn)量低于20件的工人中隨機(jī)的選取2名工人進(jìn)行培訓(xùn),求這2名工人不在同一組的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)y=f(x)的導(dǎo)函數(shù)y=f′(x)的圖象如圖,則( )
A.函數(shù)f(x)有1個(gè)極大值點(diǎn),1個(gè)極小值點(diǎn)
B.函數(shù)f(x)有2個(gè)極大值點(diǎn),2個(gè)極小值點(diǎn)
C.函數(shù)f(x)有3個(gè)極大值點(diǎn),1個(gè)極小值點(diǎn)
D.函數(shù)f(x)有1個(gè)極大值點(diǎn),3個(gè)極小值點(diǎn)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】下面給出了四個(gè)類比推理: ①由“若a,b,c∈R則(ab)c=a(bc)”類比推出“若a,b,c為三個(gè)向量則( ) = ( )”;
②“a,b為實(shí)數(shù),若a2+b2=0則a=b=0”類比推出“z1 , z2為復(fù)數(shù),若 ”;
③“在平面內(nèi),三角形的兩邊之和大于第三邊”類比推出“在空間中,四面體的任意三個(gè)面的面積之和大于第四個(gè)面的面積”;
④“在平面內(nèi),過(guò)不在同一條直線上的三個(gè)點(diǎn)有且只有一個(gè)圓”類比推出“在空間中,過(guò)不在同一個(gè)平面上的四個(gè)點(diǎn)有且只有一個(gè)球”.
上述四個(gè)推理中,結(jié)論正確的個(gè)數(shù)有( )
A.1個(gè)
B.2個(gè)
C.3個(gè)
D.4個(gè)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】200名職工年齡分布如圖所示,從中隨機(jī)抽取40名職工作樣本,采用系統(tǒng)抽樣方式,按1~200編號(hào)分為40組,分別為1~5,6~10,…,196~200,第5組抽取號(hào)碼為23,第9組抽取號(hào)碼為;若采用分層抽樣,40﹣50歲年齡段應(yīng)抽取人.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在△ABC中,角A,B,C所對(duì)的邊分別為a,b,c,函數(shù)f(x)=2cosxsin(x﹣A)+sinA(x∈R)在x= 處取得最大值.
(1)當(dāng) 時(shí),求函數(shù)f(x)的值域;
(2)若a=7且sinB+sinC= ,求△ABC的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】函數(shù)y=Asin(ωx+φ)(A>0,ω>0,|φ|< )的部分圖象如圖所示,則( )
A.f(x)的一個(gè)對(duì)稱中心為
B.f(x)的圖象關(guān)于直線 對(duì)稱
C.f(x)在 上是增函數(shù)
D.f(x)的周期為
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com