已知幾何體A-BCED的三視圖如圖所示,其中側視圖和俯視圖都是腰長為4的等腰直角三角形,正視圖為直角梯形.求:
(1)異面直線DE與AB所成角的余弦值;
(2)二面角A-ED-B的正弦值;
(3)此幾何體的體積V的大。
(1)取EC的中點是F,連接BF,
則BFDE,∴∠FBA或其補角即為異面直線DE與AB所成的角.
在△BAF中,AB=4
2
,BF=AF=2
5
,
cos∠ABF=
10
5
,.
∴異面直線DE與AB所成的角的余弦值為
10
5
.(3分)
(2)AC⊥平面BCE,過C作CG⊥DE交DE于G,連AG.可得DE⊥平面ACG,從而AG⊥DE
∴∠AGC為二面角A-ED-B的平面角.
在△ACG中,∠ACG=90°,AC=4,CG=
8
5
5

∴tan∠AGC=
5
2
,.∴sin∠AGC=
5
3

∴二面角A-ED-B的正弦值為
5
3
.(6分)
(3)由該幾何體的三視圖知AC⊥面BCED,且EC=BC=AC=4,BD=2,
∴S梯形BCED=
1
2
×(4+2)×4=12
∴V=
1
3
•S梯形BCED•AC=
1
3
×12×4=16.
即該幾何體的體積V為16.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:填空題

正四面體(所有面都是等邊三角形的三棱錐)相鄰兩側面所成二面角的余弦值是______.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,已知△BCD中,∠BCD=90°,AB⊥平面BCD,BC=2,CD=
3
,AB=
3
,E、F
分別為AC、AD上的動點.
(1)若
AE
EC
=
AF
FD
,求證:平面BEF⊥平面ABC;
(2)若
AE
EC
=1
,
AF
FD
=2
,求平面BEF與平面BCD所成的銳二面角的大。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,在三棱錐P-ABC中,直線PA⊥平面ABC,且∠ABC=90°,又點Q,M,N分別是線段PB,AB,BC的中點,且點K是線段MN上的動點.
(Ⅰ)證明:直線QK平面PAC;
(Ⅱ)若PA=AB=BC=8,且二面角Q-AK-M的平面角的余弦值為
3
9
,試求MK的長度.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,四棱錐P-ABCD的底面ABCD是平行四邊形,AD=2,AB=1,∠ABC=60°,PA⊥面ABCD,設E為PC中點,點F在線段PD上且PF=2FD.
(Ⅰ)求證:BE平面ACF;
(Ⅱ)設二面角A-CF-D的大小為θ,若|cosθ|=
42
14
,求PA的長.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖:正△ABC與Rt△BCD所在平面互相垂直,且∠BCD=90°,∠CBD=30°.
(1)求證:AB⊥CD;
(2)求二面角D-AB-C的正切值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

已知A、B、C三點在球心為O,半徑為3的球面上,且?guī)缀误wO-ABC為正三棱錐,若A、B兩點的球面距離為π,則正三棱錐的側面與底面所成角的余弦值為______.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知軸對稱平面五邊形ADCEF(如圖1),BC為對稱軸,AD⊥CD,AD=AB=1,CD=BC=
3
,將此圖形沿BC折疊成直二面角,連接AF、DE得到幾何體(如圖2).
(1)證明:AF平面DEC;
(2)求二面角E-AD-B的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

如圖PA⊥⊙O所在平面,AB是⊙O的直徑,C是⊙O上一點,AE⊥PC,AF⊥PB,給出下列結論:①AE⊥BC;②EF⊥PB;③AF⊥BC;④AE⊥平面PBC,其中真命題的序號是________.

查看答案和解析>>

同步練習冊答案