已知三棱柱的側(cè)棱長和底面邊長均為2,在底面ABC內(nèi)的射影O為底面△ABC的中心,如圖所示:
(1)聯(lián)結(jié),求異面直線與所成角的大;
(2)聯(lián)結(jié)、,求四棱錐的體積.
(1);(2).
【解析】
試題分析:(1)要求異面直線所成的角,必須按照定義作出這個(gè)角,即把異面直線平移為相交直線,求相交直線所夾的銳角或直角,當(dāng)然我們一般是過異面直線中的某一條上一點(diǎn)作另一條直線的平行線,同時(shí)要借助已知圖形中的平行關(guān)系尋找平行線,以方便解題.本題是三棱柱,顯然有∥,因此只要在中求即可;(2)求四棱錐的體積,一般用公式,即底面面積乘以高再除以3,但本題中由于四棱錐的高不容易找,而這個(gè)棱錐在三棱柱中,因此我們可借助三棱柱來求棱錐的體積,利用棱錐體積的公式,可知三棱錐的體積是三棱柱體積的三分之一,因此所求四棱錐的體積正好是三棱柱的體積的三分之二,我們求出三棱柱的即可.
試題解析:(1) 聯(lián)結(jié),并延長與交于點(diǎn),則是邊上的中線.
點(diǎn)是正的中心,且平面,
∴且.∴.
∴.
又,
∴異面直線與所成的角為.
∴即四邊形為正方形.
∴異面直線與所成角的大小為.
(2)∵三棱柱的所有棱長都為2,
∴可求算得.
∴,
∴.
考點(diǎn):(1)異面直線所成的角;(2)切割法與棱錐的體積.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
(1)求異面直線AC與BC1所成角的余弦值;
(2)求證:A1B⊥面AB1C.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
(12分)如圖所示,已知三棱柱ABC-的底面邊長均為2,側(cè)棱的長為2且與底面ABC所成角為,且側(cè)面垂直于底面ABC.
(1)求二面角的正切值的大小;
(2)若其余條件不變,只改變側(cè)棱的長度,當(dāng)側(cè)棱的長度為多長時(shí),可使面 和底面垂直.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年上海黃浦區(qū)高三上學(xué)期期末考試(即一模)理數(shù)學(xué)卷(解析版) 題型:解答題
已知三棱柱的側(cè)棱長和底面邊長均為2,在底面ABC內(nèi)的射影O為底面△ABC的中心,如圖所示:
(1)聯(lián)結(jié),求異面直線與所成角的大;
(2)聯(lián)結(jié)、,求三棱錐C1-BCA1的體積.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com