13.冪函數(shù)$f(x)={x^{\frac{1}{5}}}$,若0<x1<x2,則$f({\frac{{{x_1}+{x_2}}}{2}})$,$\frac{{f({x_1})+f({x_2})}}{2}$大小關(guān)系是( 。
A.$f({\frac{{{x_1}+{x_2}}}{2}})<\frac{{f({x_1})+f({x_2})}}{2}$B.$f({\frac{{{x_1}+{x_2}}}{2}})>\frac{{f({x_1})+f({x_2})}}{2}$
C.$f({\frac{{{x_1}+{x_2}}}{2}})=\frac{{f({x_1})+f({x_2})}}{2}$D.無法確定

分析 據(jù)冪函數(shù)f(x)在(0,+∞)上是增函數(shù),圖象是上凸的,由此可得結(jié)論.

解答 解:由于冪函數(shù)f(x)在(0,+∞)上是增函數(shù),圖象是上凸的,
則當(dāng)0<x1<x2 時(shí),應(yīng)有$f({\frac{{{x_1}+{x_2}}}{2}})$>$\frac{{f({x_1})+f({x_2})}}{2}$,
故選:B.

點(diǎn)評(píng) 本題主要考查冪函數(shù)的單調(diào)性,冪函數(shù)的圖象特征,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知橢圓C:$\left\{\begin{array}{l}{x=2cosφ}\\{y=sinφ}\end{array}\right.$(φ為參數(shù)),A,B是C上的動(dòng)點(diǎn),且滿足OA⊥OB(O為坐標(biāo)原點(diǎn)),以原點(diǎn)O為極點(diǎn),以x軸的正半軸為極軸建立極坐標(biāo)系,點(diǎn)D的極坐標(biāo)為(-4,$\frac{π}{3}$).
(1)求線段AD的中點(diǎn)M的軌跡E的普通方程;
(2)利用橢圓C的極坐標(biāo)方程證明$\frac{1}{|OA{|}^{2}}$+$\frac{1}{|OB{|}^{2}}$為定值,并求△AOB面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.(1)已知$\overrightarrow a=(8,4)$,求與$\overrightarrow a$垂直的單位向量的坐標(biāo).
(2)若$|{\overrightarrow a}|=2$,$|{\overrightarrow b}|=1$,且$\overrightarrow a$與$\overrightarrow b$的夾角為1200,求$|{\overrightarrow a+\overrightarrow b}|$的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知$tanα=\frac{1}{7},sinβ=\frac{{\sqrt{10}}}{10}$分別在下列條件下求α+2β的值:
(1)$α∈({0,\frac{π}{2}}),β∈({0,\frac{π}{2}})$
(2)$α∈({-π,0}),β∈({0,\frac{π}{2}})$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.設(shè)函數(shù)f(x)=ex-3-x-ax2
(Ⅰ)當(dāng)a=0時(shí),求f(x)的單調(diào)區(qū)間;
(Ⅱ)當(dāng)x≥0時(shí),f(x)≥-2,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.在直角坐標(biāo)系xoy中,已知曲線${C_1}:\left\{\begin{array}{l}x=cosα\\ y={sin^2}α\end{array}\right.$(α為參數(shù)),在以O(shè)為極點(diǎn),x軸正半軸為極軸的極坐標(biāo)系中,曲線${C_2}:ρcos(θ-\frac{π}{4})=-\frac{{\sqrt{2}}}{2}$,曲線C3:ρ=2sinθ
(1)求曲線C1,C2交點(diǎn)的直角坐標(biāo)
(2)設(shè)點(diǎn)A、B分別為曲線C2,C3上的動(dòng)點(diǎn),求|AB|的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.如圖,為測(cè)量山高M(jìn)N,選擇A和另一座山的山頂C為測(cè)量觀測(cè)點(diǎn).從M點(diǎn)測(cè)得A點(diǎn)的俯角∠NMA=30°,C點(diǎn)的仰角∠CAB=45°以及∠MAC=75°;從C點(diǎn)測(cè)得∠MCA=60°;已知山高BC=200m,則山高M(jìn)N=( 。
A.300mB.200$\sqrt{2}$mC.200$\sqrt{3}$mD.300$\sqrt{2}$m

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.下列四個(gè)命題中,正確的個(gè)數(shù)是(  )
①命題“?x∈R,x2-x>0”的否定是“?x∈R,x2-x<0”;
②命題“若a>b,則2a>2b-1”的否命題為“若a≤b,則2a≤2b-1”,
③“命題p∨q為真”是“命題p∧q為真”的充分不必要條件;
④在公差為d的等差數(shù)列{an}中,a1=2,a1,a3,a4成等比數(shù)列,則公差d為$-\frac{1}{2}$.
A.0B.1C.2D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.若不等式$\frac{t}{{{t^2}+2}}≤μ≤\frac{t+2}{t^2}$,對(duì)任意的t∈(0,1]上恒成立,則μ的取值范圍是( 。
A.$[{\frac{1}{13},2}]$B.[$\frac{2}{13}$,1]C.$[{\frac{1}{6},6}]$D.$[{\frac{1}{3},3}]$

查看答案和解析>>

同步練習(xí)冊(cè)答案