【題目】在直角坐標(biāo)系中,曲線的參數(shù)方程為(為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸,取相同長度單位建立極坐標(biāo)系,直線的極坐標(biāo)方程為.
(Ⅰ)求曲線和直線的直角坐標(biāo)方程;
(Ⅱ)直線與軸交點(diǎn)為,經(jīng)過點(diǎn)的直線與曲線交于,兩點(diǎn),證明:為定值.
【答案】(Ⅰ)曲線:.的直角坐標(biāo)方程為.(Ⅱ)見證明
【解析】
(Ⅰ)根據(jù)曲線的參數(shù)方程,平方相加,即可求得曲線普通方程,再根據(jù)極坐標(biāo)方程與直角坐標(biāo)方程的互化公式,即可得到直線的直角坐標(biāo)方程.
(Ⅱ)設(shè)過點(diǎn)的直線方程為(為參數(shù)),代入曲線的普通方程,根據(jù)參數(shù)的幾何意義,即可求解.
(Ⅰ)由題意,可得,
化簡得曲線:.
直線的極坐標(biāo)方程展開為,
故的直角坐標(biāo)方程為.
(Ⅱ)顯然的坐標(biāo)為,不妨設(shè)過點(diǎn)的直線方程為(為參數(shù)),
代入:得,
所以為定值.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知奇函數(shù)
(1)求b的值,并求出函數(shù)的定義域
(2)若存在區(qū)間,使得時(shí),的取值范圍為,求的取值范圍
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知某運(yùn)動(dòng)員每次投籃命中的概率低于,現(xiàn)采用隨機(jī)模擬的方法估計(jì)該運(yùn)動(dòng)員三次投籃恰有兩次命中的概率:先由計(jì)算器產(chǎn)生0到9之間取整數(shù)值的隨機(jī)數(shù),指定1,2,3,4表示命中,5,6,7,8,9,0表示不命中;再以每三個(gè)隨機(jī)數(shù)為一組,代表三次投籃的結(jié)果.經(jīng)隨機(jī)模擬產(chǎn)生了如下20組隨機(jī)數(shù):
907 966 191 925 271 932 812 458 569 683
431 257 393 027 556 488 730 113 537 989
據(jù)此估計(jì),該運(yùn)動(dòng)員三次投籃恰有兩次命中的概率為( )
A.0.35B.0.25C.0.20D.0.15
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),點(diǎn)是函數(shù)圖象上不同的兩點(diǎn),則為坐標(biāo)原點(diǎn))的取值范圍是( 。
A. B.
C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】方程的曲線即為函數(shù)的圖像,對于函數(shù),有如下結(jié)論:①在上單調(diào)遞減;②函數(shù)不存在零點(diǎn);③ 的最大值為;④若函數(shù)和的圖像關(guān)于原點(diǎn)對稱,則由方程確定;其中所有正確的命題序號(hào)是( )
A.③④B.②③C.①④D.①②
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】學(xué)校藝術(shù)節(jié)對四件參賽作品只評(píng)一件一等獎(jiǎng),在評(píng)獎(jiǎng)揭曉前,甲,乙,丙,丁四位同學(xué)對這四件參賽作品預(yù)測如下:
甲說:“是或作品獲得一等獎(jiǎng)”; 乙說:“ 作品獲得一等獎(jiǎng)”;
丙說:“ 兩件作品未獲得一等獎(jiǎng)”; 丁說:“是作品獲得一等獎(jiǎng)”.
評(píng)獎(jiǎng)揭曉后,發(fā)現(xiàn)這四位同學(xué)中只有兩位說的話是對的,則獲得一等獎(jiǎng)的作品是_________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知點(diǎn),動(dòng)點(diǎn)到直線的距離與動(dòng)點(diǎn)到點(diǎn)的距離之比為.
(1)求動(dòng)點(diǎn)的軌跡的方程;
(2)過點(diǎn)作任一直線交曲線于,兩點(diǎn),過點(diǎn)作的垂線交直線于點(diǎn),求證:平分線段.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某機(jī)構(gòu)為了了解不同年齡的人對一款智能家電的評(píng)價(jià),隨機(jī)選取了50名購買該家電的消費(fèi)者,讓他們根據(jù)實(shí)際使用體驗(yàn)進(jìn)行評(píng)分.
(Ⅰ)設(shè)消費(fèi)者的年齡為,對該款智能家電的評(píng)分為.若根據(jù)統(tǒng)計(jì)數(shù)據(jù),用最小二乘法得到關(guān)于的線性回歸方程為,且年齡的方差為,評(píng)分的方差為.求與的相關(guān)系數(shù),并據(jù)此判斷對該款智能家電的評(píng)分與年齡的相關(guān)性強(qiáng)弱.
(Ⅱ)按照一定的標(biāo)準(zhǔn),將50名消費(fèi)者的年齡劃分為“青年”和“中老年”,評(píng)分劃分為“好評(píng)”和“差評(píng)”,整理得到如下數(shù)據(jù),請判斷是否有的把握認(rèn)為對該智能家電的評(píng)價(jià)與年齡有關(guān).
好評(píng) | 差評(píng) | |
青年 | 8 | 16 |
中老年 | 20 | 6 |
附:線性回歸直線的斜率;相關(guān)系數(shù),獨(dú)立性檢驗(yàn)中的,其中.
臨界值表:
0.050 | 0.010 | 0.001 | |
3.841 | 6.635 | 10.828 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com