設(shè)f(x)(x∈R)是以3為周期的周期函數(shù),且為奇函數(shù),又f(1)>1,f(2)=a,那么 a的取值范圍是
a<-1
a<-1
分析:據(jù)函數(shù)的周期性判斷出f(-1)=f(2),利用函數(shù)為奇函數(shù)得到f(-1)=-f(1),利用等式的傳遞性得到f(2)=-f(1),代入已知不等式求出a的范圍.
解答:解:∵f(x)(x∈R)是以3為周期的周期函數(shù)
∴f(-1)=f(2)
∵為奇函數(shù)
∴f(-1)=-f(1)
∴f(2)=-f(1)
∵f(1)>1
∴f(2)<-1
∵f(2)=a
∴a<-1
故答案為a<-1
點(diǎn)評:解決函數(shù)的性質(zhì)有關(guān)的題目,關(guān)鍵是利用性質(zhì)的定義,將題中的條件聯(lián)系起來,注意奇函數(shù)在x=0處的函數(shù)值為0是一道綜合題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=x|x|+bx+c(b,c∈R),則下列命題中正確的是( 。
A、“b≥0”是“函數(shù)y=f(x)在R上單調(diào)遞增”的必要非充分條件
B、“b<0,c<0”是“方程f(x)=0有兩個(gè)負(fù)根”的充分非必要條件
C、“c=0”是“函數(shù)y=f(x)為奇函數(shù)”的充要條件
D、“c>0”是“不等式f(x)≥( 2
c
+b)x
對任意x∈R+恒成立”的既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•黃埔區(qū)一模)對于函數(shù)y=f(x)與常數(shù)a,b,若f(2x)=af(x)+b恒成立,則稱(a,b)為函數(shù)f(x)的一個(gè)“P數(shù)對”;若f(2x)≥af(x)+b恒成立,則稱(a,b)為函數(shù)f(x)的一個(gè)“類P數(shù)對”.設(shè)函數(shù)f(x)的定義域?yàn)镽+,且f(1)=3.
(1)若(1,1)是f(x)的一個(gè)“P數(shù)對”,求f(2n)(n∈N*);
(2)若(-2,0)是f(x)的一個(gè)“P數(shù)對”,且當(dāng)x∈[1,2)時(shí)f(x)=k-|2x-3|,求f(x)在區(qū)間[1,2n)(n∈N*)上的最大值與最小值;
(3)若f(x)是增函數(shù),且(2,-2)是f(x)的一個(gè)“類P數(shù)對”,試比較下列各組中兩個(gè)式子的大小,并說明理由.
①f(2-n)與2-n+2(n∈N*);
②f(x)與2x+2(x∈(0,1]).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年浙江省臺州市臨海市杜橋中學(xué)高三(下)3月月考數(shù)學(xué)試卷(文科)(解析版) 題型:選擇題

設(shè)f(x),g(x),h(x)是R上的任意實(shí)值函數(shù),如下定義兩個(gè)函數(shù)(f°g)(x)和(x)對任意x∈R,(f°g)(x)=f(g(x));(x)=f(x)g(x),則下列等式恒成立的是( )
A.((f°g)•h)(x)=°)(x)
B.°h)(x)=((f°h)•(g°h))(x)
C.((f°g)°h)(x)=((f°h)°(g°h))(x)
D.•h)(x)=•)(x)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年江西省重點(diǎn)中學(xué)協(xié)作體高三第一次聯(lián)考數(shù)學(xué)試卷(理科)(解析版) 題型:選擇題

設(shè)f(x),g(x),h(x)是R上的任意實(shí)值函數(shù),如下定義兩個(gè)函數(shù)(f°g)(x)和(x)對任意x∈R,(f°g)(x)=f(g(x));(x)=f(x)g(x),則下列等式恒成立的是( )
A.((f°g)•h)(x)=°)(x)
B.°h)(x)=((f°h)•(g°h))(x)
C.((f°g)°h)(x)=((f°h)°(g°h))(x)
D.•h)(x)=•)(x)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011年廣東省高考數(shù)學(xué)試卷(文科)(解析版) 題型:選擇題

設(shè)f(x),g(x),h(x)是R上的任意實(shí)值函數(shù),如下定義兩個(gè)函數(shù)(f°g)(x)和(x)對任意x∈R,(f°g)(x)=f(g(x));(x)=f(x)g(x),則下列等式恒成立的是( )
A.((f°g)•h)(x)=°)(x)
B.°h)(x)=((f°h)•(g°h))(x)
C.((f°g)°h)(x)=((f°h)°(g°h))(x)
D.•h)(x)=•)(x)

查看答案和解析>>

同步練習(xí)冊答案