在長方體ABCD-A1B1C1D1中,E,F(xiàn)分別是AD,DD1的中點,AB=BC=2,A1A=2
2

(Ⅰ)求證:EF平面A1BC1;
(Ⅱ)在線段BC1是否存在點P,使直線A1P與C1D垂直,如果存在,求線段A1P的長,如果不存在,請說明理由.
證明:(Ⅰ)連接AD1,在長方體ABCD-A1B1C1D1中,
AB
.
.
D1C1
,則四邊形ABC1D1是平行四邊形,
∴AD1BC1,
又∵E,F(xiàn)分別是AD,DD1的中點
∴AD1EF,
∴EFBC1,又EF?面A1BC1,BC1?面A1BC1,
∴EF平面A1BC1(3分)
(II)在平面CC1D1D中作D1Q⊥C1D交CC1于Q,
過Q作QPCB交BC1于點P,則A1P⊥C1D.(7分)
因為A1D1⊥平面CC1D1D,C1D?平面CC1D1D,
∴C1D⊥A1D1,而QPCB,CBA1D1,∴QPA1D1,
又∵A1D1∩D1Q=D1,∴C1D⊥平面A1PQC1,
且A1P?平面A1PQC1,∴A1P⊥C1D.(10分)
∵△D1C1QRt△C1CD,
C1Q
CD
=
D1C1
C1C
,∴C1Q=
2

又∵PQBC,
∴PQ=
1
2
BC=1.
∵四邊形A1PQD1為直角梯形,且高D1Q=
6
,
∴A1P=
(2-1)2+6
=
7
.(14分)
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在直三棱柱ABC-A1B1C1中,AC=3,AB=5,cos∠BAC=
3
5

(1)求證:BC⊥AC1;
(2)若D是AB的中點,求證:AC1平面CDB1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖:三棱柱ABC-A1B1C1中,側(cè)棱AA1⊥底面ABC,AC=BC=
1
2
AA1=2,∠ACB=90°,D為AB的中點,E點在BB1上且DE=
6

(1)求證:AB1平面DEC.
(2)求證:A1E⊥平面DEC.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,四棱錐P-ABCD中,PA⊥底面ABCD,PA=2
3
,BC=CD=2,∠ACB=∠ACD=
π
3

(Ⅰ)求證:BD⊥平面PAC;
(Ⅱ)若側(cè)棱PC上的點F滿足PF=7FC,求三棱錐P-BDF的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖在四棱錐P-ABCD中,底面ABCD是正方形,PA⊥底面ABCD,垂足為點A,PA=AB=2,點M,N分別是PD,PB的中點.
(I)求證:PB平面ACM;
(II)求證:MN⊥平面PAC;
(III)求四面體A-MBC的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖所示,四邊形ABCD為矩形,AD⊥平面ABE,AE=EB=BC=2,F(xiàn)為CE上的點,且BF⊥平面ACE.
(1)求證:AE⊥BE;
(2)設(shè)M在線段AB上,且滿足AM=3MB,線段CE上是否存在一點N,使得MN平面DAE?若存在,求出CN的長;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知三棱錐P-ABC中,PC⊥底面ABC,AB=BC,D、F分別為AC、PC的中點,DE⊥AP于E.
(Ⅰ)求證:AP⊥平面BDE;
(Ⅱ)若AE:EP=1:2,求截面BEF分三棱錐P-ABC所成上、下兩部分的體積比.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,棱長為1的正方體ABCD-A1B1C1D1中,
(1)求證:AC⊥平面B1D1DB;
(2)求證:BD1⊥平面ACB1
(3)求三棱錐B-ACB1體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,四棱錐P-ABCD中,底面ABCD為平行四邊形,∠ADC=45°,AD=AC=2,O為AC的中點,PO⊥平面ABCD,PO=2,M為PD的中點,
(1)證明:AD⊥平面PAC;
(2)求直線AM與平面ABCD所成角的正弦值.

查看答案和解析>>

同步練習(xí)冊答案