【題目】要想得到函數(shù) 的圖象,只需將函數(shù)y=sinx的圖象上所有的點(diǎn)( )
A.先向右平移 個(gè)單位長度,再將橫坐標(biāo)伸長為原來的2倍,縱坐標(biāo)不變
B.先向右平移 個(gè)單位長度,橫坐標(biāo)縮短為原來的 倍,縱坐標(biāo)不變
C.橫坐標(biāo)縮短為原來的 倍,縱坐標(biāo)不變,再向右平移 個(gè)單位長度
D.橫坐標(biāo)變伸長原來的2倍,縱坐標(biāo)不變,再向右平移 個(gè)單位長度
【答案】C
【解析】解:將函數(shù)y=sinx的圖象上所有的點(diǎn)橫坐標(biāo)縮短為原來的 倍,可得y=sin2x,縱坐標(biāo)不變,再向右平移 個(gè)單位長度,可得y=sin2(x﹣ )=sin(2x﹣ ).
所以答案是:C.
【考點(diǎn)精析】掌握函數(shù)y=Asin(ωx+φ)的圖象變換是解答本題的根本,需要知道圖象上所有點(diǎn)向左(右)平移個(gè)單位長度,得到函數(shù)的圖象;再將函數(shù)的圖象上所有點(diǎn)的橫坐標(biāo)伸長(縮短)到原來的倍(縱坐標(biāo)不變),得到函數(shù)的圖象;再將函數(shù)的圖象上所有點(diǎn)的縱坐標(biāo)伸長(縮短)到原來的倍(橫坐標(biāo)不變),得到函數(shù)的圖象.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】方程為x2+y2﹣4x﹣2y+4=0.以O(shè)為極點(diǎn),x軸正半軸為極軸建立極坐標(biāo)系.
(1)求l的普通方程與C的極坐標(biāo)方程;
(2)已知l與C交于P,Q,求|PQ|.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知 =(sinx,cos2x), =( cosx,1),x∈R,設(shè)f(x)= .
(1)求f(x)的解析式及單調(diào)遞增區(qū)間;
(2)在△ABC中,角A,B,C所對的邊分別為a,b,c,且a=2,f(A)=1,求△ABC面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】對于實(shí)數(shù)a,b,c,下列命題正確的是( )
A.若a>b,則ac2>bc2
B.若a<b<0,則a2>ab>b2
C.若a<b<0,則
D.若a<b<0,則
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,A、B、C的對邊分別為a,b,c,已知A≠ ,且3sinAcosB+ bsin2A=3sinC.
(I)求a的值;
(Ⅱ)若A= ,求△ABC周長的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=(x2﹣ax+a)e﹣x , a∈R.
(1)求函數(shù)f(x)的單調(diào)區(qū)間;
(2)設(shè)g(x)=f'(x),其中f'(x)為函數(shù)f(x)的導(dǎo)函數(shù).判斷g(x)在定義域內(nèi)是否為單調(diào)函數(shù),并說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=eax﹣x. (Ⅰ)若曲線y=f(x)在(0,f(0))處的切線l與直線x+2y+3=0垂直,求a的值;
(Ⅱ)當(dāng)a≠1時(shí),求證:存在實(shí)數(shù)x0使f(x0)<1.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列{an}的各項(xiàng)均為非零實(shí)數(shù),且對于任意的正整數(shù)n,都有(a1+a2+a3+…+an)2=a13+a23+a33+…+an3 .
(1)寫出數(shù)列{an}的前三項(xiàng)a1 , a2 , a3(請寫出所有可能的結(jié)果);
(2)是否存在滿足條件的無窮數(shù)列{an},使得a2017=﹣2016?若存在,求出這樣的無窮數(shù)列的一個(gè)通項(xiàng)公式;若不存在,說明理由;
(3)記an點(diǎn)所有取值構(gòu)成的集合為An , 求集合An中所有元素之和(結(jié)論不要證明).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系xOy中,已知橢圓 + =1(a>b>0)的離心率為 ,C為橢圓上位于第一象限內(nèi)的一點(diǎn).
(1)若點(diǎn)C的坐標(biāo)為(2, ),求a,b的值;
(2)設(shè)A為橢圓的左頂點(diǎn),B為橢圓上一點(diǎn),且 = ,求直線AB的斜率.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com