設(shè)M=2t+it-1×2t-1+…+i1×2+i,其中ik=0或1(k=0,1,2,…,t-1,t∈N+),并記M=(1it-1it-2…i1i)2.對于給定的
x1=(1it-1it-2…i1i)2,構(gòu)造無窮數(shù)列{xn}如下:x2=(1iit-1it-2…i2i1)2,x3=(1i1iit-1…i3i2),x4=(1i2i1iit-1…i3)2…,
(1)若x1=109,則x3= (用數(shù)字作答);
(2)給定一個正整數(shù)m,若x1=22m+2+22m+1+22m+1,則滿足xn=x1(n∈N+且n≠1)的n的最小值為 .
【答案】分析:(1)先將x1=109分成26+25+23+22+1從而得到1it-1it-2…i1i的值,然后根據(jù)x3=(1i1iit-1…i3i2)2進行求解即可;
(2)根據(jù)x1=22m+2+22m+1+22m+1則x1=(1i2m+1i2m…i1i)2,從而x2=(1ii2m+1i2m…i1)2,x3=(1i1ii2m+1i2m…i2)2,依此類推x2m+3=x1=(1i2m+1i2m…i1i)2,從而得到結(jié)論.
解答:解:(1)∵x1=109=26+25+23+22+1
∴x1=(1101101)2而x3=(1i1iit-1…i3i2)2=(1011011)2,
∴x3=26+24+23+21+1=91
(2)∵x1=22m+2+22m+1+22m+1
∴x1=(1i2m+1i2m…i1i)2而x2=(1ii2m+1i2m…i1)2,x3=(1i1ii2m+1i2m…i2)2,
當i跑到最后時移動了2m+2次,此時x2m+3=x1,
滿足xn=x1(n∈N+且n≠1)的n的最小值為2m+3
故答案為:91、2m+3
點評:本題主要考查了數(shù)列的應用,解題的關(guān)鍵是弄清題意,根據(jù)新的定義求解,屬于中檔題.