6.函數(shù)f(x)=x2-x-2,x∈[-3,3],那么任取一點x0∈[-3,3],使f(x0)≤0的概率是(  )
A.1B.$\frac{1}{2}$C.$\frac{4}{7}$D.$\frac{2}{3}$

分析 本題是幾何概型的考查,只要明確事件對應(yīng)的區(qū)間長度,利用長度比求概率

解答 解:由題意,本題符合幾何概型,區(qū)間[-3,3]長度為6,
使f(x0)≤0即x2-x-2≤0的區(qū)間為[-1,2],長度為3,
由幾何概型公式得到,使f(x0)≤0的概率為$\frac{3}{6}=\frac{1}{2}$.
故選B.

點評 本題考查了幾何概型概率求法;關(guān)鍵是明確事件集合測度,本題是區(qū)間長度的比為概率.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.?dāng)?shù)列{an}的通項公式為${a_n}={n^2}$,前n項和記為Sn
(1)求S1,S2,S3
(2)用數(shù)學(xué)歸納法證明:${S_n}=\frac{n(n+1)(2n+1)}{6}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.已知△ABC的內(nèi)角A,B,C所對的邊分別為a,b,c,a=15,b=10,A=60°,則sinB等于( 。
A.-$\frac{\sqrt{6}}{3}$B.$\frac{\sqrt{6}}{3}$C.$\frac{\sqrt{3}}{3}$D.-$\frac{\sqrt{3}}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.梯形ABCD中,AB∥CD,AB=4,AD=DC=1,若$\overrightarrow{AD}$⊥$\overrightarrow{DC}$,則$\overrightarrow{AC}$•$\overrightarrow{BD}$=-3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.設(shè)△ABC的三個內(nèi)角A,B,C的對邊分別為a,b,c,向量$\overrightarrow{m}$=(b,c-a),$\overrightarrow{n}$=(sinB-sinC,sinA+sinC),且$\overrightarrow{m}$⊥$\overrightarrow{n}$.
(1)求角A的大。
(2)若a=2,c=4$\sqrt{3}$sinB,求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.將函數(shù)$f(x)=2sin(\frac{x}{3}-\frac{π}{6})$的圖象向左平移$\frac{π}{4}$個單位,再向上平移2個單位,得到函數(shù)g(x)的圖象,則g(x)的解析式為(  )
A.$g(x)=2sin(\frac{x}{3}-\frac{π}{4})-2$B.$g(x)=2sin(\frac{x}{3}+\frac{π}{4})+2$C.$g(x)=2sin(\frac{x}{3}-\frac{π}{12})+2$D.$g(x)=2sin(\frac{x}{3}-\frac{π}{12})-2$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.已知6tanαsinα=5,α∈(-$\frac{π}{2}$,0),則sinα的值是-$\frac{\sqrt{5}}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.已知集合A={x∈N|-2<x<4},$B=\{x|\frac{1}{2}≤{2^x}≤4\}$,則A∩B=( 。
A.{x|-1≤x≤2}B.{-1,0,1,2}C.{1,2}D.{0,1,2}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.在一次實驗中,同時拋擲4枚均勻的硬幣16次,設(shè)4枚硬幣正好出現(xiàn)3枚正面向上,1枚反面向上的次數(shù)為ξ,則ξ的方差是( 。
A.3B.4C.1D.$\frac{15}{16}$

查看答案和解析>>

同步練習(xí)冊答案