1.在四棱錐O-ABCD中,底面ABCD是平行四邊形,設(shè)OA=a,OB=b,OC=c,則OD可表示為(  )
A.a+c-bB.a+2b-cC.b+c-aD.a+c-2b

分析 $\overrightarrow{OD}$與$\overrightarrow{a},\overrightarrow,\overrightarrow{c}$之間難以建立直接的關(guān)系,挖掘隱含條件$\overrightarrow{AD}$=$\overrightarrow{BC}$,尋找$\overrightarrow{OD}$、$\overrightarrow{a}$與$\overrightarrow{AD}$以及$\overrightarrow$、$\overrightarrow{c}$與$\overrightarrow{BC}$的關(guān)系可間接獲解.

解答 解:∵在四棱錐O-ABCD中,底面ABCD是平行四邊形,
∴$\overrightarrow{AO}+\overrightarrow{OD}$=$\overrightarrow{AD}$,
$\overrightarrow{BO}+\overrightarrow{OC}$=$\overrightarrow{BC}=\overrightarrow{AD}$,
∴$\overrightarrow{AO}+\overrightarrow{OD}$=$\overrightarrow{BO}+\overrightarrow{OC}$,
∴$\overrightarrow{OD}$=-$\overrightarrow{AO}+\overrightarrow{BO}+\overrightarrow{OC}$
=$\overrightarrow{OA}+\overrightarrow{OC}-\overrightarrow{OB}$
=$\overrightarrow{a}+\overrightarrow{c}-\overrightarrow$.
故選:A.

點(diǎn)評(píng) 本題考查向量的求法,是基礎(chǔ)題,解題時(shí)要認(rèn)真審題,注意空間向量加法法則的合理運(yùn)用.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

11.△ABC的內(nèi)角A,B,C的對(duì)邊分別為a,b,c,已2cosC(acosB+bcosA)=c.
(1)求角C;
(2)若c=$\sqrt{7}$,△ABC的面積為$\frac{{3\sqrt{3}}}{4}$,求△ABC的周長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

12.等比數(shù)列{an}中,若a5=1,a8=8,則公比q=2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

9.設(shè)函數(shù)f(x)=Asin(ωx+φ)(A,ω,φ為常數(shù),且A>0,ω>0,0<φ<π)的部分圖象如圖所示.
(1)求A,ω,φ的值;
(2)設(shè)θ為銳角,且f(θ)=-$\frac{3}{5}\sqrt{3}$,求f(θ-$\frac{π}{6}$)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

16.2002年在北京召開(kāi)的國(guó)際數(shù)學(xué)家大會(huì),會(huì)標(biāo)是以我國(guó)古代數(shù)學(xué)家趙爽的弦圖為基礎(chǔ)設(shè)計(jì)的.弦圖是由四個(gè)全等直角三角形與一個(gè)小正方形拼成的一個(gè)大正方形(如圖).如果小正方形的面積為1,大正方形的面積為25,直角三角形中較小的銳角為θ,那么sin2θ的值為(  )
A.$\frac{1}{3}$B.$\frac{{\sqrt{3}}}{2}$C.$\frac{23}{24}$D.$\frac{24}{25}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

6.求雙曲線(xiàn)C:$\frac{x^2}{8}$-$\frac{y^2}{12}$=1的焦點(diǎn)坐標(biāo)、實(shí)軸長(zhǎng)、虛軸長(zhǎng)及漸近線(xiàn)方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

13.已知函數(shù)f(x)=kx2-lnx,若f(x)>0在函數(shù)定義域內(nèi)恒成立,則k的取值范圍是( 。
A.$({\frac{1}{e},e})$B.$({\frac{1}{2e},\frac{1}{e}})$C.$({-∞,\frac{1}{2e}})$D.$({\frac{1}{2e},+∞})$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

10.函數(shù)f(x)=$\sqrt{x+3}$+$\frac{1}{x+2}$的定義域?yàn)椋ā 。?table class="qanwser">A.{x|x≥-3且x≠-2}B.{x|x≥-3且x≠2}C.{x|x≥-3}D.{x|x≥-2且x≠3}

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

18.下列說(shuō)法正確的個(gè)數(shù)有( 。
(1)三角形、梯形一定是平面圖形;
(2)若四邊形的兩條對(duì)角線(xiàn)相交于一點(diǎn),則該四邊形是平面圖形;
(3)三條平行線(xiàn)最多可確定三個(gè)平面;
(4)平面α和β相交,它們只有有限個(gè)公共點(diǎn);
(5)若A,B,C,D四個(gè)點(diǎn)既在平面α內(nèi),又在平面β內(nèi),則這兩平面重合.
A.2B.3C.4D.5

查看答案和解析>>

同步練習(xí)冊(cè)答案