|
a
|=1
|
b
|=2
|
c
|=3
,且
a
b
=0
,則(
a
+2
b
)
c
的最小值為
 
分析:|
a
|=1
,|
b
|=2
,且
a
b
=0
,則兩向量垂直,則當
C
a
+ 2
b
反向時,(
a
+2
b
)
c
有最小值.
解答:解:∵|
a
|=1
,|
b
|=2
,且
a
b
=0
,
a
b

|
a
+2
b
| =
1+ (2×2)2
=
17

則當
C
a
+ 2
b
反向時
(
a
+2
b
)
c
=-
17
×3

故答案為:-3
17
點評:本題考查的是兩個向量數(shù)量積的最值問題:
a
b
=|
a
|•|
b|
cosθ
當θ=0,即兩向量同向時,cosθ=1時,
a
b
=|
a
|•|
b|
有最大值;
當θ=π,即兩向量反向時,cosθ=-1時,
a
b
=-|
a
|•|
b|
有最小值
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

|
a
|=1,|
b
|=2
,且
a
b
夾角120°,則|2
a
+
b
|
=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知f (x)、g(x)都是定義在R上的函數(shù),如果存在實數(shù)m、n使得h (x)=m f(x)+ng(x),那么稱h (x)為f (x)、g(x)在R上生成的一個函數(shù).設f (x)=x2+ax,g(x)=x+b(a,b∈R),l(x)=2x2+3x-1,h (x)為f (x)、g(x)在R上生成的一個二次函數(shù).
(Ⅰ)設a=1,b=2,若h (x)為偶函數(shù),求h(
2
)
;
(Ⅱ)設b>0,若h (x)同時也是g(x)、l(x)在R上生成的一個函數(shù),求a+b的最小值;
(Ⅲ)試判斷h(x)能否為任意的一個二次函數(shù),并證明你的結論.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設數(shù)列{an}的前n項和Sn=na+n(n-1)b,(n=1,2,…),a、b是常數(shù)且b≠0.
(1)證明:以(an,
Sn
n
-1)為坐標的點Pn(n=1,2,…)都落在同一條直線上,并寫出此直線的方程.
(2)設a=1,b=
1
2
,圓C是以(r,r)為圓心,r為半徑的圓(r>0),在(2)的條件下,求使得點P1、P2、P3都落在圓C外時,r的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

函數(shù)f(x)=ax2+bx+1(a,b為實數(shù),且a≠0),x∈R,H(x)=
f(x)
0
(x>0)
(x=0)
-f(x)(x<0)

(1)若f(-1)=0,且方程ax2+bx+1=0(a≠0)有唯一實根,求H(x)的表達式;
(2)在(1)的條件下,當x∈[-2,2]時,g(x)=f(x)-kx是單調函數(shù),求實數(shù)k取值范圍;
(3)設a=1且b=0,解關于m的不等式:H(m2+2)+H(3m)>0.

查看答案和解析>>

同步練習冊答案