(14分)已知函數(shù),且其導(dǎo)函數(shù)的圖像過(guò)原點(diǎn).
(Ⅰ)當(dāng)時(shí),求函數(shù)的圖像在處的切線方程;
(Ⅱ)若存在,使得,求的最大值;
(Ⅲ)當(dāng)時(shí),求函數(shù)的零點(diǎn)個(gè)數(shù).
解析: ,
由得 ,.---------------------2分
(Ⅰ) 當(dāng)時(shí), ,,,
所以函數(shù)的圖像在處的切線方程為,即--------------------4分
(Ⅱ) 存在,使得,
,,
當(dāng)且僅當(dāng)時(shí),
所以的最大值為. -----------------9分
極大值 | 極小值 |
(Ⅲ) 當(dāng)時(shí),的變化情況如下表:
-
---11分
的極大值,的極小值
又,.
所以函數(shù)在區(qū)間內(nèi)各有一個(gè)零點(diǎn),
故函數(shù)共有三個(gè)零點(diǎn)。--------------------14分
注:①證明的極小值也可這樣進(jìn)行:
設(shè),則
當(dāng)時(shí), ,當(dāng)時(shí), ,函數(shù)在區(qū)間上是增函數(shù),在區(qū)間上是減函數(shù),故函數(shù)在區(qū)間上的最大值為,從而的極小值.
②證明函數(shù)共有三個(gè)零點(diǎn)。也可這樣進(jìn)行:
的極大值,的極小值,
當(dāng) 無(wú)限減小時(shí),無(wú)限趨于 當(dāng) 無(wú)限增大時(shí),無(wú)限趨于
故函數(shù)在區(qū)間內(nèi)各有一個(gè)零點(diǎn),
故函數(shù)共有三個(gè)零點(diǎn)。--------------------14分
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
f2(x2)-f2(x1) | x2-x1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:廣東省惠州市2013屆高三第一次調(diào)研考試數(shù)學(xué)文科試題 題型:044
已知函數(shù),且其導(dǎo)函數(shù)的圖像過(guò)原點(diǎn).
(1)當(dāng)a=1時(shí),求函數(shù)f(x)的圖像在x=3處的切線方程;
(2)若存在x<0,使得,求a的最大值;
(3)當(dāng)a>0時(shí),求函數(shù)f(x)的零點(diǎn)個(gè)數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2012-2013學(xué)年廣東省高三8月摸底考試文科數(shù)學(xué)試卷(解析版) 題型:解答題
已知函數(shù),且其導(dǎo)函數(shù)的圖像過(guò)原點(diǎn).
(1)當(dāng)時(shí),求函數(shù)的圖像在處的切線方程;
(2)若存在,使得,求的最大值;
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:模擬題 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com