如圖,平面⊥平面,為正方形, ,且分別是線段的中點(diǎn).
(Ⅰ)求證://平面;
(Ⅱ)求異面直線與所成角的余弦值.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本小題滿(mǎn)分14分)
如圖,沿等腰直角三角形的中位線,將平面折起,平面⊥平面,得到四棱錐,,設(shè)、的中點(diǎn)分別為、,
(1)求證:平面⊥平面
(2)求證:
(3)求平面與平面所成銳二面角的余弦值。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本小題滿(mǎn)分12分)如圖所示多面體中,⊥平面,為平行四邊形,分別為的中點(diǎn),,,.
(1)求證:∥平面;
(2)若∠=90°,求證;
(3)若∠=120°,求該多面體的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本小題滿(mǎn)分10分)
如圖,在三棱錐中,底面, 點(diǎn),分別在棱上,且
(Ⅰ)求證:平面;
(Ⅱ)當(dāng)為的中點(diǎn)時(shí),求與平面所成的角的正弦值;
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知四棱錐—的底面是正方形,⊥底面,是上的任意一點(diǎn)。
(1)求證:平面
(2)設(shè),,求點(diǎn)到平面的距離
(3)求的值為多少時(shí),二面角——的大小為120°
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖:一個(gè)圓錐的底面半徑為2,高為6,在其中有一個(gè)半徑為x的內(nèi)接圓柱。
(1)試用x表示圓柱的體積;
(2).當(dāng)x為何值時(shí),圓柱的側(cè)面積最大,最大值是多少。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,已知高為3的棱柱ABC-A1B1C1的底面是邊長(zhǎng)為1的正三角形,求三棱錐B1-ABC的體積。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
一個(gè)幾何體的三視圖如圖所示(單位長(zhǎng)度為:cm):
主視圖 側(cè)視圖 俯視圖
(1)求該幾何體的體積; (2)求該幾何題的表面積。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(8分) 如圖,在四棱錐中,底面是邊長(zhǎng)為的正方形,側(cè)面,且,若、分別為、的中點(diǎn).
(1)求證:∥平面;
(2)求證:平面平面.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com