(本題滿分14分)
已知函數(shù),點
(Ⅰ)若,函數(shù)上既能取到極大值,又能取到極小值,求的取值范圍;
(Ⅱ) 當時,對任意的恒成立,求的取值范圍;
(Ⅲ)若,函數(shù)處取得極值,且,是坐標原點,證明:直線與直線不可能垂直.

解:(Ⅰ)當時,
,根據(jù)導數(shù)的符號可以得出函數(shù)處取得極大值,
處取得極小值.函數(shù)上既能取到極大值,又能取到極小值,
則只要即可,即只要即可.
所以的取值范圍是.                                    ………… 4分
(Ⅱ)當時,對任意的恒成立,
對任意的恒成立,
也即在對任意的恒成立.                  
,則.        ………… 6分
,則,
則這個函數(shù)在其定義域內有唯一的極小值點
故也是最小值點,所以
從而,所以函數(shù)單調遞增.
函數(shù).故只要即可.
所以的取值范圍是                             ………… 9分
(Ⅲ)假設,即,
,
,

由于是方程的兩個根,
.代入上式得.   ………… 12分
,
,與矛盾,
所以直線與直線不可能垂直.                           ………… 14分

解析

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

(本題滿分14分)已知向量 ,,函數(shù).   (Ⅰ)求的單調增區(qū)間;  (II)若在中,角所對的邊分別是,且滿足:,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(本題滿分14分)已知,且以下命題都為真命題:

命題 實系數(shù)一元二次方程的兩根都是虛數(shù);

命題 存在復數(shù)同時滿足.

求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源:2012-2013學年吉林省高三第一次月考文科數(shù)學試卷(解析版) 題型:解答題

(本題滿分14分)已知函數(shù)

(1)若,求x的值;

(2)若對于恒成立,求實數(shù)m的取值范圍.

 

查看答案和解析>>

科目:高中數(shù)學 來源:2010-2011學年廣東省惠州市高三第三次調研考試數(shù)學理卷 題型:解答題

(本題滿分14分)

已知橢圓的離心率為,過坐標原點且斜率為的直線相交于、,

⑴求、的值;

⑵若動圓與橢圓和直線都沒有公共點,試求的取值范圍.

 

查看答案和解析>>

科目:高中數(shù)學 來源:2010-2011學年廣東省惠州市高三第三次調研考試數(shù)學理卷 題型:解答題

((本題滿分14分)

已知梯形ABCD中,AD∥BC,∠ABC =∠BAD =,AB=BC=2AD=4,E、F分別是AB、CD上的點,EF∥BC,AE = x,G是BC的中點.沿EF將梯形ABCD翻折,使平面AEFD⊥平面EBCF (如圖).

(1)當x=2時,求證:BD⊥EG ;

(2)若以F、B、C、D為頂點的三棱錐的體積記為

的最大值;

(3)當取得最大值時,求二面角D-BF-C的余弦值.

 

查看答案和解析>>

同步練習冊答案