(本小題滿分12分)
在等比數(shù)列中,.
(1)求;
(2)設(shè),求數(shù)列的前項(xiàng)和.

(1) .(2).

解析試題分析:(1)設(shè)的公比為q,依題意得方程組,
解得,即可寫(xiě)出通項(xiàng)公式.
(2)因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/df/f/1r4on2.png" style="vertical-align:middle;" />,利用等差數(shù)列的求和公式即得.
試題解析:(1)設(shè)的公比為q,依題意得
,
解得,
因此,.
(2)因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/df/f/1r4on2.png" style="vertical-align:middle;" />,
所以數(shù)列的前n項(xiàng)和.
考點(diǎn):等比數(shù)列、等差數(shù)列.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知數(shù)列是公差為-2的等差數(shù)列,的等比中項(xiàng)。
(1)求數(shù)列的通項(xiàng)公式;
(2)設(shè)數(shù)列的前n項(xiàng)和為,求的最大值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知等比數(shù)列滿足的等差中項(xiàng)
(1)求數(shù)列的通項(xiàng)公式;(2)若求使成立的正整數(shù)的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知是等差數(shù)列,其中,前四項(xiàng)和
(1)求數(shù)列的通項(xiàng)公式an; 
(2)令,①求數(shù)列的前項(xiàng)之和
是不是數(shù)列中的項(xiàng),如果是,求出它是第幾項(xiàng);如果不是,請(qǐng)說(shuō)明理由。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知等差數(shù)列的前項(xiàng)和為,,,
(1)求數(shù)列的通項(xiàng)公式;
(2)若,求數(shù)列的前100項(xiàng)和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

設(shè)數(shù)列的前項(xiàng)和,為等比數(shù)列,且.
(1)求數(shù)列的通項(xiàng)公式;(2)設(shè),求數(shù)列項(xiàng)和

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知等差數(shù)列的公差,設(shè)的前項(xiàng)和為,
(1)求;
(2)求)的值,使得.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

設(shè)等差數(shù)列的前項(xiàng)和為.
(1)求數(shù)列的通項(xiàng)公式;
(2)求數(shù)列的前項(xiàng)和,并求的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知數(shù)列{an}是等差數(shù)列,{bn}是等比數(shù)列,且a1=b1=2,b4=54,a1+a2+a3=b2+b3
(1)求數(shù)列{an}和{bn}的通項(xiàng)公式;
(2)數(shù)列{cn}滿足cn=anbn,求數(shù)列{cn}的前n項(xiàng)和Sn

查看答案和解析>>

同步練習(xí)冊(cè)答案