已知:數(shù)列{an}的前n項和為Sn,且滿足Sn=2an-n,(n∈N*).
(Ⅰ)求:a1,a2的值;
(Ⅱ)求:數(shù)列{an}的通項公式;
(Ⅲ)若數(shù)列{bn}的前n項和為Tn,且滿足bn=nan,(n∈N*),求數(shù)列{bn}的前n項和Tn
(Ⅰ)∵Sn=2an-n,
令n=1,解得a1=1;
令n=2,解得a2=3…(2分)
(Ⅱ)∵Sn=2an-n,
所以Sn-1=2an-1-(n-1),(n≥2)
兩式相減得an=2an-1+1…(4分)
所以an+1=2(an-1+1),(n≥2)…(5分)
又因為a1+1=2
所以數(shù)列{an+1}是首項為2,公比為2的等比數(shù)列…(6分)
所以an+1=2n,即通項公式an=2n-1…(7分)
(Ⅲ)∵bn=nan,
所以bn=n(2n-1)=n•2n-n
所以Tn=(1•2-1)+(2•22-2)+…+(n•2n-n)
Tn=(1•2+2•22+…+n•2n)-(1+2+…+n)…(9分)
Sn=1•2+2•22+…+n•2n
2Sn=1•22+2•23+…+(n-1)•2n+n•2n+1
①-②得-Sn=2+22+…+2n-n•2n+1
=
2(1-2n)
1-2
-n•2n+1
…(11分)
Sn=2(1-2n)+n•2n+1=2+(n-1)•2n+1…(12分)
所以Tn=2+(n-1)•2n+1-
n(n+1)
2
…(13分)
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知數(shù)列{an}的前n項和的公式是Sn=
π
12
(2n2+n)

(1)求證:{an}是等差數(shù)列,并求出它的首項和公差;
(2)記bn=sinan•sinan+1•sinan+2,求出數(shù)列{an•bn}的前n項和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知等差數(shù)列{an}中,公差d=-4,a2,a3,a6成等比數(shù)列.
(1)求數(shù)列{an}的通項公式;
(2)若數(shù)列{an}的前k項和Sk=-96,求k的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知等差數(shù)列{an}的首項a1=4,公差d>0,且a1,a5,a21分別是正數(shù)等比數(shù)列{bn}的b3,b5,b7項.
(Ⅰ)求數(shù)列{an}與{bn}的通項公式;
(Ⅱ)設(shè)數(shù)列{cn}對任意n*均有
c1
b1
+
c2
b2
+
+
cn
bn
=an+1
成立,設(shè){cn}的前n項和為Tn,求Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知數(shù)列an的前項和Sn=2n+2-4(n∈N*),函數(shù)f(x)對任意的x∈R都有f(x)+f(1-x)=1,數(shù)列{bn}滿足bn=f(0)+f(
1
n
)+f(
2
n
)…+f(
n-1
n
)+f(1).
(1)分別求數(shù)列{an}、{bn}的通項公式;
(2)若數(shù)列{cn}滿足cn=an•bn,Tn是數(shù)列{cn}的前項和,是否存在正實數(shù)k,使不等式k(n2-9n+26)Tn>4ncn對于一切的n∈N*恒成立?若存在請指出k的取值范圍,并證明;若不存在請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

通項公式為an=
2
n(n+1)
的數(shù)列{an}的前n項和為
9
5
,則項數(shù)n為(  )
A.7B.8C.9D.10

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

設(shè)數(shù)列{an}的前n項和為Sn,且Sn=2n-1.?dāng)?shù)列{bn}滿足b1=2,bn+1-2bn=8an
(1)求數(shù)列{an}的通項公式;
(2)證明:數(shù)列{
bn
2n
}為等差數(shù)列,并求{bn}的前n項和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知等比數(shù)列{an}中,a1=3,a4=81,當(dāng)數(shù)列{bn}滿足bn=log3an,則數(shù)列{
1
bnbn+1
}
的前2013項和S2013為______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

若單調(diào)遞增數(shù)列滿足,且,則的取值范圍是     .

查看答案和解析>>

同步練習(xí)冊答案