如圖,在某城市中,M,N兩地之間有整齊的方格形道路網(wǎng),A1,A2,A3,A4是道路網(wǎng)中位于一條對(duì)角線上的4個(gè)交匯處,今在道路網(wǎng)M,N處的甲、乙兩人分別要到N,M處,他們分別隨機(jī)地選擇一條沿街的最短路徑,同時(shí)以每10分鐘一格的速度分別向N,M處行走,直到到達(dá)N,M為止.

(1)求甲經(jīng)過A2的概率.
(2)求甲、乙兩人相遇經(jīng)A2點(diǎn)的概率.
(3)求甲、乙兩人相遇的概率.
(1)   (2)    (3)
(1)甲經(jīng)過A2到達(dá)N,可分為兩步:第一步:甲從M經(jīng)過A2的方法數(shù):種;第二步:甲從A2到N的方法數(shù):種,所以甲經(jīng)過A2的方法數(shù)為()2,所以甲經(jīng)過A2的概率P==.
(2)由(1)知:甲經(jīng)過A2的方法數(shù)為:()2;乙經(jīng)過A2的方法數(shù)也為:()2;所以甲、乙兩人相遇經(jīng)A2點(diǎn)的方法數(shù)為:()4=81;
甲、乙兩人相遇經(jīng)A2點(diǎn)的概率P==.
(3)甲、乙兩人沿最短路徑行走,只可能在A1,A2,A3,A4處相遇,他們?cè)贏i(i=1,2,3,4)相遇的走法有()4種方法;所以:()4+()4+()4+()4=164,
甲、乙兩人相遇的概率為:=.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

某單位從一所學(xué)校招收某類特殊人才.對(duì)位已經(jīng)選拔入圍的學(xué)生進(jìn)行運(yùn)動(dòng)協(xié)調(diào)能力和邏輯思維能力的測(cè)試,其測(cè)試結(jié)果如下表:
 

一般
良好
優(yōu)秀
一般



良好



優(yōu)秀



例如表中運(yùn)動(dòng)協(xié)調(diào)能力良好且邏輯思維能力一般的學(xué)生是人.由于部分?jǐn)?shù)據(jù)丟失,只知道從這位參加測(cè)試的學(xué)生中隨機(jī)抽取一位,抽到邏輯思維能力優(yōu)秀的學(xué)生的概率為
(1)求的值;
(2)從運(yùn)動(dòng)協(xié)調(diào)能力為優(yōu)秀的學(xué)生中任意抽取位,求其中至少有一位邏輯思維能力優(yōu)秀的學(xué)生的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

據(jù)民生所望,相關(guān)部門對(duì)所屬服務(wù)單位進(jìn)行整治行核查,規(guī)定:從甲類3個(gè)指標(biāo)項(xiàng)中隨機(jī)抽取2項(xiàng),從乙類2個(gè)指標(biāo)項(xiàng)中隨機(jī)抽取1項(xiàng).在所抽查的3個(gè)指標(biāo)項(xiàng)中,3項(xiàng)都優(yōu)秀的獎(jiǎng)勵(lì)10萬元;只有甲類2項(xiàng)優(yōu)秀的獎(jiǎng)勵(lì)6萬元;甲類只有1項(xiàng)優(yōu)秀、乙類1項(xiàng)優(yōu)秀的提出警告,有2項(xiàng)或2項(xiàng)以上不優(yōu)秀的停業(yè)運(yùn)營(yíng)并罰款8萬元.已知某家服務(wù)單位甲類3項(xiàng)指標(biāo)項(xiàng)中有2項(xiàng)優(yōu)秀,乙類2項(xiàng)指標(biāo)項(xiàng)中有1項(xiàng)優(yōu)秀.
求:(1)這家單位受到獎(jiǎng)勵(lì)的概率;
(2)這家單位這次整治性核查中所獲金額的均值(獎(jiǎng)勵(lì)為正數(shù),罰款為負(fù)數(shù)).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

一個(gè)各面都涂滿紅色的4×4×4(長(zhǎng)、寬、高均為4)的正方體被鋸成同樣大小單位的(長(zhǎng)、寬、高均為1)小正方體,若將這些小正方體放在一個(gè)不透明的袋子中,充分混合后,從中任取一個(gè)小正方體,則取出僅有一面涂有紅色的小正方體的概率為(  )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

從邊長(zhǎng)為1的正方形的中心和頂點(diǎn)這五點(diǎn)中,隨機(jī)(等可能)取兩點(diǎn),則該兩點(diǎn)間的距離為的概率是    .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

從1,2,3,4中任取2個(gè)不同的數(shù),則取出的2個(gè)數(shù)之差的絕對(duì)值為2的概率是(  )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

在集合A={2,3}中隨機(jī)取一個(gè)元素m,在集合B={1,2,3}中隨機(jī)取一個(gè)元素n,得到點(diǎn)P(m,n),則點(diǎn)P在圓x2+y2=9內(nèi)部的概率為      .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

同時(shí)拋擲三枚均勻的硬幣,出現(xiàn)一枚正面、兩枚反面的概率為(  )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

袋中裝有大小相同且形狀一樣的四個(gè)球,四個(gè)球上分別標(biāo)有“2”、“3”、“4”、“6”這四個(gè)數(shù).現(xiàn)從中隨機(jī)選取三個(gè)球,則所選的三個(gè)球上的數(shù)恰好能構(gòu)成一個(gè)等差數(shù)列的概率是________.

查看答案和解析>>

同步練習(xí)冊(cè)答案