【題目】已知函數(shù),為實(shí)數(shù),
(1)若函數(shù)在區(qū)間上是單調(diào)函數(shù),求實(shí)數(shù)的范圍;
(2)若對(duì)任意,都有成立,求實(shí)數(shù)的值;
(3)若,求函數(shù)的最小值。
【答案】(1) (2)-4.(3) 見(jiàn)解析.
【解析】
(1)函數(shù)在區(qū)間上是單調(diào)函數(shù),故分單調(diào)增與單調(diào)減兩種情況進(jìn)行討論求解的取值范圍;
(2)對(duì)任意,都有成立,可以得到二次函數(shù)的對(duì)稱(chēng)軸,從而解得結(jié)果;
(3)要求函數(shù)的最小值,首先要求出在上單調(diào)性,根據(jù)題意分情況討論求解函數(shù)的單調(diào)性及最值.
解:(1)函數(shù)在區(qū)間上是單調(diào)函數(shù),
函數(shù)的對(duì)稱(chēng)軸為,
所以對(duì)稱(chēng)軸或 ,所以或.
(2)因?yàn)楹瘮?shù)對(duì)任意,都有成立,
所以的圖像關(guān)于直線(xiàn)對(duì)稱(chēng),
所以,
得.
(3)若即時(shí),
函數(shù)在單調(diào)遞增,
故.
若即時(shí),
函數(shù)在單調(diào)遞減,
故.
若即時(shí),
函數(shù)在單調(diào)遞減,
函數(shù)在單調(diào)遞增,
故.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)是定義在上的偶函數(shù),當(dāng)時(shí), .
(1)直接寫(xiě)出函數(shù)的增區(qū)間(不需要證明);
(2)求出函數(shù), 的解析式;
(3)若函數(shù), ,求函數(shù)的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某廠(chǎng)生產(chǎn)某產(chǎn)品的年固定成本為250萬(wàn)元,每生產(chǎn)千件,需另投入成本(萬(wàn)元),若年產(chǎn)量不足千件, 的圖像是如圖的拋物線(xiàn),此時(shí)的解集為,且的最小值是,若年產(chǎn)量不小于千件, ,每千件商品售價(jià)為50萬(wàn)元,通過(guò)市場(chǎng)分析,該廠(chǎng)生產(chǎn)的商品能全部售完;
(1)寫(xiě)出年利潤(rùn)(萬(wàn)元)關(guān)于年產(chǎn)量(千件)的函數(shù)解析式;
(2)年產(chǎn)量為多少千件時(shí),該廠(chǎng)在這一商品的生產(chǎn)中所獲利潤(rùn)最大?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】支付寶和微信支付是目前市場(chǎng)占有率較高的支付方式,某第三方調(diào)研機(jī)構(gòu)對(duì)使用這兩種支付方式的人數(shù)作了對(duì)比.從全國(guó)隨機(jī)抽取了100個(gè)地區(qū)作為研究樣本,計(jì)算了各個(gè)地區(qū)樣本的使用人數(shù),其頻率分布直方圖如圖.
(1)記A表示事件“微信支付人數(shù)低于50千人”,估計(jì)A的概率;
(2)填寫(xiě)下面列聯(lián)表,并根據(jù)列聯(lián)表判斷是否有99%的把握認(rèn)為支付人數(shù)與支付方式有關(guān);
支付人數(shù)<50千人 | 支付人數(shù)≥50千人 | 總計(jì) | |
微信支付 | |||
支付寶支付 | |||
總計(jì) |
(3)根據(jù)支付人數(shù)的頻率分布直方圖,對(duì)兩種支付方式的優(yōu)劣進(jìn)行比較.
附:
P(K2≥K) | 0.050 | 0.010 | 0.001 |
K | 3.841 | 6.635 | 10.828 |
K2=
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在三棱錐中,底面,,,是的中點(diǎn),是線(xiàn)段上的一點(diǎn),且,連接,,.
(1)求證:平面;
(2)求點(diǎn)到平面的距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)的定義域?yàn)?/span>,的定義域?yàn)?/span>.
(1)求出集合;
(2)求;
(3)若,且,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
在平面直角坐標(biāo)系中,直線(xiàn)的參數(shù)方程是(為參數(shù)).以原點(diǎn)為極點(diǎn),軸的正半軸為極軸,建立極坐標(biāo)系,圓以極坐標(biāo)系中的點(diǎn)為圓心,為半徑.
(1)求圓的極坐標(biāo)方程;
(2)判斷直線(xiàn)與圓之間的位置關(guān)系.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某化工廠(chǎng)生產(chǎn)某種產(chǎn)品,當(dāng)年產(chǎn)量在150噸至250噸時(shí),每年的生產(chǎn)成本萬(wàn)元與年產(chǎn)量噸之間的關(guān)系可可近似地表示為.
(1)若每年的生產(chǎn)總成本不超過(guò)2000萬(wàn)元,求年產(chǎn)量的取值范圍;
(2)求年產(chǎn)量為多少?lài)崟r(shí),每噸的平均成本最低,并求每噸的最低成本.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,在△ABC中,D,E分別為AB,AC的中點(diǎn),O為DE的中點(diǎn),,BC=4.將△ADE沿DE折起到△的位置,使得平面平面BCED, F為A1C的中點(diǎn),如圖2.
(1)求證EF∥平面;
(2)求點(diǎn)C到平面的距離.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com