【題目】設(shè)p:實(shí)數(shù)x滿足x2﹣4ax+3a2<0,其中a>0; q:實(shí)數(shù)x滿足 <0.
(1)若a=1,且p∨q為真,求實(shí)數(shù)x的取值范圍;
(2)若p是q的必要不充分條件,求實(shí)數(shù)a的取值范圍.
【答案】
(1)解:由x2﹣4ax+3a2<0,得(x﹣3a)(x﹣a)<0,
又a>0,所以a<x<3a,
當(dāng)a=1時(shí),1<x<3,即p為真時(shí)實(shí)數(shù)x的取值范圍是1<x<3.
q為真時(shí) 等價(jià)于(x﹣2)(x﹣3)<0,得2<x<3,
即q為真時(shí)實(shí)數(shù)x的取值范圍是2<x<3.
若p∨q為真,則實(shí)數(shù)x的取值范圍是1<x<3
(2)解:p是q的必要不充分條件,等價(jià)于qp且p推不出q,
設(shè)A={x|a<x<3a},B={x|2<x<3},則BA;
則 ,
所以實(shí)數(shù)a的取值范圍是1≤a≤2
【解析】(1)利用一元二次不等式的解法可化簡(jiǎn)命題p,q,若p∨q為真,則p,q至少有1個(gè)為真,即可得出;(2)根據(jù)p是q的必要不充分條件,即可得出.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在長(zhǎng)方體ABCD﹣A1B1C1D1中,AA1=AD=a,E為CD上任意一點(diǎn).
(I)求證:B1E⊥AD1;
(Ⅱ)若CD= a,是否存在這樣的E點(diǎn),使得AD1與平面B1AE成45°的角?說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,四棱錐中,平面平面,底面為梯形,,,,且與均為正三角形,為的中點(diǎn),為重心.
(1)求證:平面;
(2)求三棱錐的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),當(dāng)x = -1時(shí)取得極大值7,當(dāng)x = 3時(shí)取得極小值;
(1)求a,b的值;
(2)求f(x)的極小值。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】若函數(shù)f(x)= x3+x2﹣ax+3a在區(qū)間[1,2]上單調(diào)遞增,則實(shí)數(shù)a的取值范圍是 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)= .
(1)證明函數(shù)f(x)在(﹣1,+∞)上為單調(diào)遞增函數(shù);
(2)若x∈[0,2],求函數(shù)f(x)的值域.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)= x2﹣ax+(3﹣a)lnx,a∈R.
(1)若曲線y=f(x)在點(diǎn)(1,f(1))處的切線與直線2x﹣y+1=0垂直,求a的值;
(2)設(shè)f(x)有兩個(gè)極值點(diǎn)x1 , x2 , 且x1<x2 , 求證:﹣5﹣f(x1)<f(x2)<﹣ .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,拋物線: ,直線與拋物線交于, 兩點(diǎn).
(1)若直線, 的斜率之積為,證明:直線過定點(diǎn);
(2)若線段的中點(diǎn)在曲線: 上,求的最大值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com