某地區(qū)規(guī)劃道路建設(shè),需考慮道路鋪設(shè)方案.方案設(shè)計圖中,點表示城市,兩點之間連線表示兩城市間可鋪設(shè)道路,連線上數(shù)據(jù)表示兩城市間鋪設(shè)道路的費用,要求從任一城市都能到達其余各城市,并且鋪設(shè)道路的總費用最。纾涸谌齻城市道路設(shè)計中,若城市間可鋪設(shè)道路的線路圖如圖1,則最優(yōu)設(shè)計方案如圖2,此時鋪設(shè)道路的最小總費用為l0.現(xiàn)給出該地區(qū)可鋪設(shè)道路的線路圖如圖3,則鋪設(shè)道路的最小總費用為
16
16

分析:確定鋪設(shè)道路的總費用最小時的線路,即可求得鋪設(shè)道路的最小總費用.
解答:解:如圖,根據(jù)加粗的路線設(shè)計,可以到達每個城市,且鋪設(shè)道路的總費用最小,
即鋪設(shè)道路的總費用最小時的線路為:A→E→F→G→D,從G分叉,G→C→B
總費用為2+3+1+2+3+5=16
故答案為:16
點評:本題考查統(tǒng)籌方法在實際中的應(yīng)用,考查學(xué)生閱讀能力,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

某地區(qū)規(guī)劃道路建設(shè),考慮道路鋪設(shè)方案,方案設(shè)計圖中,求表示城市,兩點之間連線表示兩城市間可鋪設(shè)道路,連線上數(shù)據(jù)表示兩城市間鋪設(shè)道路的費用,要求從任一城市都能到達其余各城市,并且鋪設(shè)道路的總費用最小.例如:在三個城市道路設(shè)計中,若城市間可鋪設(shè)道路的線路圖如圖1,則最優(yōu)設(shè)計方案如圖2,此時鋪設(shè)道路的最小總費用為10.現(xiàn)給出該地區(qū)可鋪設(shè)道路的線路圖如圖3,則鋪設(shè)道路的最小總費用為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某地區(qū)規(guī)劃道路建設(shè),考慮道路鋪設(shè)方案.方案設(shè)計圖中,點表示城市,兩點之間連線表示兩城市間可鋪設(shè)道路,邊線上數(shù)據(jù)表示兩城市間鋪設(shè)道路的費用,要求從任一城市都能到達其余各城市,并且鋪設(shè)道路的總費用最。纾涸谌齻城市道路設(shè)計中,若城市間可鋪設(shè)道路的線路圖如圖1,則最優(yōu)設(shè)計方案如圖2,此時鋪設(shè)道路的最小總費用為10.

現(xiàn)給出該地區(qū)可鋪設(shè)道路的線路圖如圖3,則鋪設(shè)道路的最小費用為________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年山東省青島二中高三(上)9月月考數(shù)學(xué)試卷(文科)(解析版) 題型:選擇題

某地區(qū)規(guī)劃道路建設(shè),考慮道路鋪設(shè)方案,方案設(shè)計圖中,求表示城市,兩點之間連線表示兩城市間可鋪設(shè)道路,連線上數(shù)據(jù)表示兩城市間鋪設(shè)道路的費用,要求從任一城市都能到達其余各城市,并且鋪設(shè)道路的總費用最。纾涸谌齻城市道路設(shè)計中,若城市間可鋪設(shè)道路的線路圖如圖1,則最優(yōu)設(shè)計方案如圖2,此時鋪設(shè)道路的最小總費用為10.現(xiàn)給出該地區(qū)可鋪設(shè)道路的線路圖如圖3,則鋪設(shè)道路的最小總費用為( )

A.11
B.9
C.16
D.18

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012年全國普通高等學(xué)校招生統(tǒng)一考試文科數(shù)學(xué)(福建卷解析版) 題型:填空題

某地區(qū)規(guī)劃道路建設(shè),考慮道路鋪設(shè)方案,方案設(shè)計圖中,求表示城市,兩點之間連線表示兩城市間可鋪設(shè)道路,連線上數(shù)據(jù)表示兩城市間鋪設(shè)道路的費用,要求從任一城市都能到達其余各城市,并且鋪設(shè)道路的總費用最小。例如:在三個城市道路設(shè)計中,若城市間可鋪設(shè)道路的線路圖如圖1,則最優(yōu)設(shè)計方案如圖2,此時鋪設(shè)道路的最小總費用為10.

現(xiàn)給出該地區(qū)可鋪設(shè)道路的線路圖如圖3,則鋪設(shè)道路的最小總費用為____________。

【解析】走線路最消費用16.

 

查看答案和解析>>

同步練習(xí)冊答案