(14分)(理)在三棱錐S-ABC中,△ABC是邊長為4的正三角形,平面SAC
⊥平面ABC,SA=SC=2,M、N分別為AB、SB的中點(diǎn)。
(Ⅰ)證明:AC⊥SB;
(Ⅱ)求二面角N-CM-B的大;
(Ⅲ)求點(diǎn)B到平面CMN的距離.
解法一:(Ⅰ)取AC中點(diǎn)D,連結(jié)SD、DB.
∵SA=SC,AB=BC,∴AC⊥SD且AC⊥BD,∴AC⊥平面SDB,又SB平面SDB,
∴AC⊥SB.
(Ⅱ)∵AC⊥平面SDB,AC平面ABC,∴平面SDB⊥平面ABC.過N作NE⊥BD于E,NE⊥平面ABC,過E作EF⊥CM于F,連結(jié)NF,則NF⊥CM.∴∠NFE為二面角
N-CM-B的平面角.∵平面SAC⊥平面ABC,SD⊥AC,
∴SD⊥平面ABC.又∵NE⊥平面ABC,∴NE∥SD.
∵SN=NB,∴NE=SD===,
且ED=EB.在正△ABC中,由平幾知識(shí)可求得EF=MB=,在Rt△NEF中,tan∠
NFE==2,∴二面角N-CM-B的大小是arctan2.
(Ⅲ)在Rt△NEF中,NF==,∴S△CMN=CM·NF=,S△
CMB=BM·CM=2.
設(shè)點(diǎn)B到平面CMN的距離為h,∵VB-CMN=VN-CMB,NE⊥平面CMB,∴S△CMN·h=S△CMB·NE,
∴h==.即點(diǎn)B到平面CMN的距離為.
解法二:(Ⅰ)取AC中點(diǎn)O,連結(jié)OS、O B.
∵SA=SC,AB=BC,∴AC⊥SO且AC⊥BO.
∵平面SAC⊥平面ABC,平面SAC∩平面ABC=AC∴SO⊥面ABC,∴SO⊥BO.
如圖所示建立空間直角坐標(biāo)系O-xyz.則A(2,0,0),B(0,2,0),C(-2,0,0),S(0,0,2),M(1,,0),N(0,,).∴=(-4,0,0),=(0,2,2),
∵·=(-4,0,0)·(0,2,2)=0,∴AC⊥SB.
(Ⅱ)由(Ⅰ)得=(3,,0),=(-1,0,).
設(shè)=(x,y,z)為平面CMN的一個(gè)法向量,則
取z=1,則x=,y=-,∴=(,-,1),
又=(0,0,2)為平面ABC的一個(gè)法向量,
∴cos(,)==.
∴二面角N-CM-B的大小為arccos.
(Ⅲ)由(Ⅰ)(Ⅱ)得=(-1,,0),
解析
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
(12分)在如圖所示的幾何體中,四邊形ABCD是等腰梯形,AB∥CD,∠DAB=60°,F(xiàn)C⊥平面ABCD,AE⊥BD,CB=CD=CF.
(1)求證:BD⊥平面AED;(4分)
(2)求二面角F-BD-C的余弦值.(8分)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(12分)如圖,四邊形ABCD是矩形,PA⊥平面ABCD,其中AB=3,PA=4,
若在線段PD上存在點(diǎn)E使得BE⊥CE,求線段AD的取值范圍,并求當(dāng)線段PD上有且只
有一個(gè)點(diǎn)E使得BE⊥CE時(shí),二面角E—BC—A正切值的大小。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分12分)
如圖,已知四棱錐中,側(cè)棱平面,底面是平行四邊形,,,,分別是的中點(diǎn).
(1)求證:平面
(2)當(dāng)平面與底面所成二面角為時(shí),求二面角的大小.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:單選題
在正方體ABCD-A1B1C1D1中,M、N分別為棱AA1和BB1的中點(diǎn),則sin〈,〉的值為( )
A. | B. | C. | D. |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:單選題
[2013·廣州質(zhì)檢]已知向量a=(2,-1,3),b=(-1,4,-2),c=(7,5,λ),若a,b,c三個(gè)向量共面,則實(shí)數(shù)λ等于( )
A. | B. | C. | D. |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:單選題
已知直二面角α-l-β,點(diǎn)A∈α,AC⊥l,C為垂足,B∈β,BD⊥l,D為垂足.若AB=2,AC=BD=1,則D到平面ABC的距離等于( )
A. | B. | C. | D.1 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com