若關(guān)于x的方程ax+2x-4=0(a>0且a≠1)的所有根記作x1,x2,…,xm(m∈N*),關(guān)于x的方程loga2x+x-2=0的所有根記作x1′,x2′,…,xn′(n∈N*),則的值為( )
A.
B.
C.1
D.2
【答案】分析:本題可以用特殊值法解答,我們令a=2,根據(jù)方程根的個(gè)數(shù)等于對(duì)應(yīng)函數(shù)零點(diǎn)的個(gè)數(shù),我們易用圖象法求出滿足條件的x1,x2,…,xm及m的值與x1′,x2′,…,xn′與n的值,代入則即可得到結(jié)果.
解答:解:令a=2,
則y=ax為增函數(shù),y=-2x+4為減函數(shù),

由圖可得兩個(gè)函數(shù)的畫(huà)像只有一個(gè)交點(diǎn)(1,2)點(diǎn)
則方程ax+2x-4=0有且只有一個(gè)實(shí)根1,即x1=1,m=1
又由y=loga2x=logax+1也為增函數(shù),y=-x+2也為減函數(shù)

由圖可得兩個(gè)函數(shù)的畫(huà)像只有一個(gè)交點(diǎn)(1,1)點(diǎn)
則方程ax+2x-4=0有且只有一個(gè)實(shí)根1,即x1′=1,n=1
此時(shí)==1
故選:C
點(diǎn)評(píng):本題考查的知識(shí)點(diǎn)是根的存在性及根的個(gè)數(shù)判斷,對(duì)于選擇題我們可采用特殊值代法簡(jiǎn)化我們的解題過(guò)程.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若關(guān)于x的方程ax+2x-4=0(a>0且a≠1)的所有根記作x1,x2,…,xm(m∈N*),關(guān)于x的方程loga2x+x-2=0的所有根記作x1′,x2′,…,xn′(n∈N*),則
x1+x2+…+xm+
x
1
+
x
2
+…+
x
n
m+n
的值為( 。
A、
1
4
B、
1
2
C、1
D、2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若關(guān)于x的方程|ax-1|-2x=0有兩個(gè)不相等的實(shí)數(shù)解,則實(shí)數(shù)a的取值范圍是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若關(guān)于x的方程ax+2x-4=0(a>0,a≠1)的所有根為u1,u2,…,uk,(k∈N*),關(guān)于x的方程loga2x=2-x的所有根為v1,v2,…,vl,(l∈N*),則
u1+u2+…+uk+v1+v2+…vl
k+l
的值為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若關(guān)于x的方程ax-x-a=0(a>0)有兩個(gè)解,則實(shí)數(shù)a的取值范圍為
(1,+∞)
(1,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若關(guān)于x的方程|ax-1|-2a=0有兩個(gè)相異的實(shí)根,則實(shí)數(shù)a的取值范圍是
 

查看答案和解析>>

同步練習(xí)冊(cè)答案