若向量垂直向量,向量(λ,μ∈R且λ、μ≠0)則

[  ]

A.

B.

C.不平行于,也不重于

D.以上三種情況都可能

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(2012•浙江模擬)平面內(nèi)與直線平行的非零向量稱為直線的方向向量;與直線的方向向量垂直的非零向量稱為直線的法向量.在平面直角坐標(biāo)系中,利用求動(dòng)點(diǎn)的軌跡方程的方法,可以求出過點(diǎn)A(2,1)且法向量為
n
=(-1,2)的直線
(點(diǎn)法式)方程為-(x-2)+2(y-1)=0,化簡后得x-2y=0.類比以上求法,在空間直角坐標(biāo)系中,經(jīng)過點(diǎn)A(2,1,3),且法向量為
n
=(-1,2,1)
的平面(點(diǎn)法式)方程為
x-2y-z+3=0
x-2y-z+3=0
(請(qǐng)寫出化簡后的結(jié)果).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年浙江省高三第二次五校聯(lián)考理科數(shù)學(xué)試卷(解析版) 題型:填空題

平面內(nèi)與直線平行的非零向量稱為直線的方向向量,與直線的方向向量垂直的非零向量稱為直線的法向量.在平面直角坐標(biāo)系中,利用求動(dòng)點(diǎn)軌跡方程的方法,可以求出過點(diǎn)且法向量為的直線(點(diǎn)法式)方程為,化簡后得.則在空間直角坐標(biāo)系中,平面經(jīng)過點(diǎn),且法向量為的平面(點(diǎn)法式)方程化簡后的結(jié)果為        

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年浙江省五校第二次聯(lián)考數(shù)學(xué)試卷(文科)(解析版) 題型:填空題

平面內(nèi)與直線平行的非零向量稱為直線的方向向量;與直線的方向向量垂直的非零向量稱為直線的法向量.在平面直角坐標(biāo)系中,利用求動(dòng)點(diǎn)的軌跡方程的方法,可以求出過點(diǎn)A(2,1)且法向量為(點(diǎn)法式)方程為-(x-2)+2(y-1)=0,化簡后得x-2y=0.類比以上求法,在空間直角坐標(biāo)系中,經(jīng)過點(diǎn)A(2,1,3),且法向量為的平面(點(diǎn)法式)方程為    (請(qǐng)寫出化簡后的結(jié)果).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013屆河北省高二第二學(xué)期期中考試文科數(shù)學(xué)試卷(解析版) 題型:解答題

在正方體中,如圖E、F分別是 ,CD的中點(diǎn),

(1)求證:平面ADE;

(2)cos.        

    

【解析】本試題主要考查了運(yùn)用空間向量進(jìn)行求證垂直問題和求解向量的夾角的余弦值的簡單運(yùn)用.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(08年永定一中二模理)我們把平面內(nèi)與直線的方向向量垂直的非零向量稱為直線的法向量,在平面直角坐標(biāo)系中,利用求動(dòng)點(diǎn)的軌跡方程的方法,可以求出過點(diǎn)且法向量為(點(diǎn)法式)方程為,化簡后得.類比以上求法,在空間直角坐標(biāo)系中,經(jīng)過點(diǎn),且法向量為的平面(點(diǎn)法式)方程為_______________(請(qǐng)寫出化簡后的結(jié)果).

查看答案和解析>>

同步練習(xí)冊(cè)答案