【題目】已知橢圓E: =1(a>b>0)的離心率為 ,過焦點(diǎn)垂直與x軸的直線被橢圓E截得的線段長為 .
(1)求橢圓E的方程;
(2)斜率為k的直線l經(jīng)過原點(diǎn),與橢圓E相交于不同的兩點(diǎn)M,N,判斷并說明在橢圓E上是否存在點(diǎn)P,使得△PMN的面積為 .
【答案】
(1)解:由題意, ,得c=1,∴b2=a2﹣c2=1.
則橢圓E的方程為:
(2)解:存在.
設(shè)點(diǎn)P(x,y),直線l的方程為y=x﹣1.
由 ,得M(0,﹣1),N( ),
則|MN|= .
則點(diǎn)P到直線l的距離為 .
設(shè)過點(diǎn)P與直線l平行的直線l1:y=x+m.
聯(lián)立 ,得3x2+4mx+2m2﹣2=0.
由△=16m2﹣12(2m2﹣2)=0,解得m= .
當(dāng)m= 時,l與l1之間的距離為 >1;
當(dāng)m=﹣ 時,l與l1之間的距離為 <1.
則在橢圓E上存在點(diǎn)P,使得△PMN的面積為
【解析】(1)由題意求得a,c的值,結(jié)合隱含條件求得b,則橢圓方程可求;(2)設(shè)出P點(diǎn)坐標(biāo)及直線l的方程,由△PMN的面積為 求得點(diǎn)P到直線l的距離為1,再設(shè)出過點(diǎn)P與直線l平行的直線l1:y=x+m.與橢圓方程聯(lián)立,由判別式等于0求得m值,再結(jié)合兩平行線間的距離公式求出l與l1之間的距離,與1比較得答案.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在直三棱柱ABC﹣A1B1C1中,平面A1BC⊥側(cè)面A1ABB1 , 且AA1=AB=2.
(1)求證:AB⊥BC;
(2)若直線AC與平面A1BC所成的角為 ,求銳二面角A﹣A1C﹣B的大。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知△ABC中,a、b、c分別為角A、B、C所在的對邊,且a=4,b+c=5,tanB+tanC+ = tanBtanC,則△ABC的面積為( )
A.
B.3
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知P為△ABC內(nèi)一點(diǎn),且滿足 ,記△ABP,△BCP,△ACP的面積依次為S1 , S2 , S3 , 則S1:S2:S3等于( )
A.1:2:3
B.1:4:9
C.2:3:1
D.3:1:2
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知空間四點(diǎn)A(2,0,0),B(0,2,1),C(1,1,1),D(﹣1,m,n).
(1)若AB∥CD,求實(shí)數(shù)m,n的值;
(2)若m+n=1,且直線AB和CD所成角的余弦值為 ,求實(shí)數(shù)m的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列{an}中,a1=1,an+1=2an+1(n∈N*),Sn為其前n項(xiàng)和,則S5的值為( )
A.57
B.61
C.62
D.63
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知命題p:實(shí)數(shù)x滿足x2﹣5ax+4a2<0,其中a>0,命題q:實(shí)數(shù)x滿足 . (Ⅰ)若a=1,且p∧q為真,求實(shí)數(shù)x的取值范圍;
(Ⅱ)若¬p是¬q的充分不必要條件,求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知是方程 的兩個不等實(shí)根,函數(shù)的定義域?yàn)?/span>.
(1)當(dāng)時,求函數(shù)的最值;
(2)試判斷函數(shù)在區(qū)間的單調(diào)性;
(3)設(shè),試證明:對于,若,則.
(參考公式: ,當(dāng)且僅當(dāng)時等號成立)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com