已知函數(shù).
(1)求的單調(diào)遞增區(qū)間;
(2)在中,三內(nèi)角的對(duì)邊分別為,已知,,.求的值.
(1) ;(2).

試題分析:(1)此類題目需將原函數(shù)化為一角一函數(shù)形式,然后根據(jù)正余弦函數(shù)的性質(zhì),確定單調(diào)區(qū)間;(2)先由確定的值,然后利用余弦定理和條件解出.
試題解析:(1)
               3分
    5分
的單調(diào)遞增區(qū)間為         6分
(2)由 得
 ∴           8分
由余弦定理得        10分
               12分
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知A、B、C為的三個(gè)內(nèi)角且向量共線.
(Ⅰ)求角C的大;
(Ⅱ)設(shè)角的對(duì)邊分別是,且滿足,試判斷的形狀.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

已知三個(gè)向量,,共線,其中分別是的三條邊及相對(duì)三個(gè)角,則的形狀是(  )
A.等腰三角形B.等邊三角形C.直角三角形D.等腰直角三角形

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

中,,,則的面積為(  ).
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

中,,,,則             

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,旅客從某旅游區(qū)的景點(diǎn)處下山至處有兩種路徑.一種是從沿直線步行到,另一種從沿索道乘纜車到,然后從沿直線步行到.現(xiàn)有甲、乙兩位游客從處下山,甲沿勻速步行,速度為 m/min,在甲出發(fā)2 min后,乙從乘纜車到,在處停留1 min后,再?gòu)?img src="http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824015559635309.png" style="vertical-align:middle;" />勻速步行到. 假設(shè)纜車勻速直線運(yùn)動(dòng)的速度為130 m/min,山路長(zhǎng)1260 m ,經(jīng)測(cè)量,,.

(1)求索道的長(zhǎng);
(2)問(wèn)乙出發(fā)后多少分鐘后,乙在纜車上與甲的距離最短?
(3)為使兩位游客在處互相等待的時(shí)間不超過(guò)3分鐘,乙步行的速度應(yīng)控制在什么范圍內(nèi)?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

中,,則此三角形解的情況是 (    )
A.一解B.兩解C.一解或兩解D.無(wú)解

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

已知,則函數(shù)的最大值是( )
A.3B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

的三內(nèi)角的對(duì)邊分別為,且滿足,則的形狀是(    )
A.正三角形 B.等腰三角形
C.等腰直角三角形D.等腰三角形或直角三角形

查看答案和解析>>

同步練習(xí)冊(cè)答案