由函數(shù)y=f(x)確定數(shù)列{an},an=f(n),函數(shù)y=f(x)的反函數(shù)y=f-1(x)能確定數(shù)列bn,bn=f-1(n)若對(duì)于任意n∈N*都有bn=an,則稱數(shù)列{bn}是數(shù)列{an}的“自反函數(shù)列”
(1)設(shè)函數(shù)f(x)=
px+1
x+1
,若由函數(shù)f(x)確定的數(shù)列{an}的自反數(shù)列為{bn},求an;
(2)已知正整數(shù)列{cn}的前項(xiàng)和sn=
1
2
(cn+
n
cn
).寫出Sn表達(dá)式,并證明你的結(jié)論;
(3)在(1)和(2)的條件下,d1=2,當(dāng)n≥2時(shí),設(shè)dn=
-1
anSn2
,Dn是數(shù)列{dn}的前n項(xiàng)和,且Dn>loga(1-2a)恒成立,求a的取值范圍.
分析:解:(1)由f(x)=
px+1
x+1
結(jié)合bn=f-1(n)若對(duì)于任意n∈N*都有bn=an求解,
(2)由正整數(shù)cn的前n項(xiàng)和sn=
1
2
(cn+
n
cn
)
則由通項(xiàng)與前n項(xiàng)和之間的關(guān)系求解,要注意分類討論;
(3)在(1)和(2)的條件下,d1=2,∴D1=2,則n≥2時(shí),dn=
-1
an
s
n
2
=
2
n(n-1)
,由Dn是數(shù)列dn的前n項(xiàng)和有Dn=1+d2+…+dn用裂項(xiàng)相消法求解Dn=2(2-
1
n
)
,再由Dn>loga(1-2a)恒成立,即loga(1-2a)小于Dn的最小值,只要求得Dn的最小值即可.
解答:解:(1)由題意得
f(x)=
1-x
X-P

f(x)= 
PX+1
X+1
 且f-1(n)=f (n)

∴P=-1∴an=
n-1
n+1


(2)∵正整數(shù)cn的前n項(xiàng)和sn=
1
2
(cn+
n
cn
)

c1=
1
2
(c1+
n
c1
)

解之得∴c1=1,s1=1
當(dāng)n≥2時(shí),cn=sn-sn-1
2sn=sn-sn-1+
n
sn-sn-1

sn+sn-1=
n
sn-sn-1

sn2-sn-12=n
∴sn-12-sn-22=n-1
sn-22-sn-22=n-2
s22-s12=2
以上各式累加,得∴sn2 =1+2+3+4+…+n=
n(n+1)
2
,sn=
n(n+1)
2


(3)在(1)和(2)的條件下,d1=2∴D1=2
當(dāng)n≥2時(shí),設(shè)dn=
-1
an
s
n
2
=
2
n(n-1)
,由Dn是數(shù)列dn的前n項(xiàng)和
有Dn=1+d2+…+dn
=2[1+(1-
1
2
)+(
1
2
-
1
3
)+(
1
3
-
1
4
)…(
1
n-1
-
1
n
)]

=2(2-
1
n
)

綜上Dn=2(2-
1
n
)

因?yàn)镈n>loga(1-2a)恒成立,所以loga(1-2a)小于Dn的最小值,
顯然Dn的最小值在n=1時(shí)取得,即[Dn]min=2
∴l(xiāng)oga(1-2a)<2
∴a滿足的條件是
a>0且a≠1
1-2a>0
,∴l(xiāng)oga(1-2a)<2
解得0<a<
2
-1
點(diǎn)評(píng):本題一道新定義題,考查了反函數(shù)的求法,數(shù)列通項(xiàng)與前n項(xiàng)和間的關(guān)系以及累加法求通項(xiàng)和裂項(xiàng)相消法求前n項(xiàng)和等知識(shí)和方法,綜合性較強(qiáng).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

由函數(shù)y=f(x)確定數(shù)列{an},an=f(n),若函數(shù)y=f(x)的反函數(shù)y=f-1(x)能確定數(shù)列{bn},bn=f-1(n),則稱數(shù)列{bn}是數(shù)列{an}的“反數(shù)列”.
(1)若函數(shù)f(x)=2
x
確定數(shù)列{an}的反數(shù)列為{bn},求{bn}的通項(xiàng)公式;
(2)對(duì)(1)中{bn},不等式
1
bn+1
+
1
bn+2
+…+
1
b2n
1
2
loga(1-2a)
對(duì)任意的正整數(shù)n恒成立,求實(shí)數(shù)a的取值范圍;
(3)設(shè)cn=
1+(-1)λ
2
3n+
1-(-1)λ
2
•(2n-1)(λ為正整數(shù))
,若數(shù)列{cn}的反數(shù)列為{dn},{cn}與{dn}的公共項(xiàng)組成的數(shù)列為{tn},求數(shù)列{tn}前n項(xiàng)和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

由函數(shù)y=f(x)確定數(shù)列{an},an=f(n),函數(shù)y=f(x)的反函數(shù)y=f-1(x)能確定數(shù)列{bn},bn=f-1(n),若對(duì)于任意n?N*,都有bn=an,則稱數(shù)列{bn}是數(shù)列{an}的“自反數(shù)列”.
(1)若函數(shù)f(x)=
px+1
x+1
確定數(shù)列{an}的自反數(shù)列為{bn},求an;
(2)在(1)條件下,記
n
1
x1
+
1
x2
+…
1
xn
為正數(shù)數(shù)列{xn}的調(diào)和平均數(shù),若dn=
2
an+1
-1
,Sn為數(shù)列{dn}的前n項(xiàng)之和,Hn為數(shù)列{Sn}的調(diào)和平均數(shù),求
lim
n→∞
=
Hn
n
;
(3)已知正數(shù)數(shù)列{cn}的前n項(xiàng)之和Tn=
1
2
(Cn+
n
Cn
)
.求Tn表達(dá)式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2007•浦東新區(qū)一模)由函數(shù)y=f(x)確定數(shù)列{an},an=f(n),若函數(shù)y=f(x)的反函數(shù)y=f-1(x)能確定數(shù)列{bn},bn=f-1(n),則稱數(shù)列{bn}是數(shù)列{an}的“反數(shù)列”.
(1)若函數(shù)f(x)=2
x
確定數(shù)列{an}的反數(shù)列為{bn},求bn;
(2)設(shè)cn=3n,數(shù)列{cn}與其反數(shù)列{dn}的公共項(xiàng)組成的數(shù)列為{tn}
(公共項(xiàng)tk=cp=dq,k、p、q為正整數(shù)).求數(shù)列{tn}前10項(xiàng)和S10;
(3)對(duì)(1)中{bn},不等式
1
bn+1
+
1
bn+2
+…+
1
b2n
1
2
loga(1-2a)
對(duì)任意的正整數(shù)n恒成立,求實(shí)數(shù)a的范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若函數(shù)y=f(x)存在反函數(shù)y=f-1(x),由函數(shù)y=f(x)確定數(shù)列{an},an=f(n),由函數(shù)y=f-1(x)確定數(shù)列{bn},bn=f-1(n),則稱數(shù)列{bn}是數(shù)列{an}的“反數(shù)列”.
(1)若數(shù)列{bn}是函數(shù)f(x)=
x+1
2
確定數(shù)列{an}的反數(shù)列,試求數(shù)列{bn}的前n項(xiàng)和Sn;
(2)若函數(shù)f(x)=2
x
確定數(shù)列{cn}的反數(shù)列為{dn},求{dn}的通項(xiàng)公式;
(3)對(duì)(2)題中的{dn},不等式
1
dn+1
+
1
dn+2
+…+
1
d2n
1
2
log(1-2a)對(duì)任意的正整數(shù)n恒成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案