1.函數(shù)f(x)=5${\;}^{\frac{1}{x-1}}$+$\sqrt{2-x}$的定義域?yàn)椋ā 。?table class="qanwser">A.{x|1<x≤2}B.{x|1≤x≤2}C.{x|x≤2且x≠1}D.{x|x≥0且x≠1}

分析 要使函數(shù)f(x)=5${\;}^{\frac{1}{x-1}}$+$\sqrt{2-x}$有意義,只需x-1≠0,且2-x≥0,解不等式即可得到所求定義域.

解答 解:要使函數(shù)f(x)=5${\;}^{\frac{1}{x-1}}$+$\sqrt{2-x}$有意義,
只需x-1≠0,且2-x≥0,
解得x≤2且x≠1.
即定義域?yàn)閧x|x≤2且x≠1}.
故選:C.

點(diǎn)評(píng) 本題考查函數(shù)的定義域的求法,注意分式分母不為0,偶次根式被開(kāi)方式非負(fù),考查運(yùn)算能力,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

11.已知集合A={1,3},B={3,4},P={x|x?A},Q={x|x?B},則P∩Q=( 。
A.{3}B.{∅,{3}}C.{∅}D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

12.設(shè)函數(shù)f(x)=x3-12x+b,則下列結(jié)論正確的是( 。
A.函數(shù)f(x)在(-∞,-1)上單調(diào)遞增
B.函數(shù)f(x)在(-∞,-1)上單調(diào)遞減
C.若b=-6,則函數(shù)f(x)的圖象在點(diǎn)(-2,f(-2))處的切線方程為y=10
D.若b=0,則函數(shù)f(x)的圖象與直線y=10只有一個(gè)公共點(diǎn)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

9.已知$\left\{\begin{array}{l}{x-y+2≥0}\\{x+y-4≥0}\\{2x-y-5≤0}\end{array}\right.$,求:
(Ⅰ)z=$\frac{y+2}{x+1}$的取值范圍;
(Ⅱ)z=x2+y2-8x-2y+17的最小值.
(III)求z=|x-2y+1|的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

16.已知函數(shù)f(x)=$\sqrt{{x}^{2}+9}$,g(x)=ax-3.
(1)當(dāng)a=l時(shí),確定函數(shù)h(x)=f(x)-g(x)在(0,+∞)上的單調(diào)性;
(2)若對(duì)任意x∈[0,4],總存在x0∈[-2,2],使得g(x0)=f(x)成立,求 實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

6.已知全集U={x|-5≤x≤3},集合A={x|-5≤x<-1},B={x|-1≤x≤1}.
(1)求A∩B,A∪B;
(2)求(∁UA)∩(∁UB),(∁UA)∪(∁UB).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

13.如圖,網(wǎng)格紙上正方形小格的邊長(zhǎng)為1(表示1cm),圖中粗線畫(huà)出的是某三棱錐的三視圖,則該三棱錐的外接球的表面積是(  )
A.36πcm2B.25πcm2C.16πcm2D.9πcm2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

10.下列四組函數(shù)中,是同一個(gè)函數(shù)的是(  )
A.$f(x)=\sqrt{x^2}$,$g(x)={(\sqrt{x})^2}$B.f(x)=2log2x,$g(x)={log_2}{x^2}$
C.f(x)=ln(x-1)-ln(x+1),$g(x)=ln(\frac{x-1}{x+1})$D.f(x)=lg(1-x)+lg(1+x),g(x)=lg(1-x2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

11.已知函數(shù)f(x)=$\left\{\begin{array}{l}{x+2,(x≤-1)}\\{{x}^{2},(-1<x<2)}\\{2x,(x≥2)}\end{array}\right.$.
(Ⅰ)求f(-3),f(4),f(f(-2))的值;
(Ⅱ)若f(m)=8,求m的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案