【題目】求適合下列條件的直線方程:
(1)經(jīng)過點P(3,2)且在兩坐標軸上的截距相等;
(2)經(jīng)過點A(-1,-3),傾斜角等于直線y=3x的傾斜角的2倍.
【答案】(1)2x-3y=0或x+y-5=0.(2)3x+4y+15=0.
【解析】試題分析:(1)當橫截距 時,縱截距,此時直線過點,可得直線方程;當橫截距 時,縱截距,此時直線方程設(shè)為,把代入,解得 ,由此能求出過點 且在兩坐標上的截距相等的直線方程;(2)先假設(shè)直線的傾斜角是 ,進而根據(jù)直線傾斜角與斜率之間的關(guān)系得到,然后根據(jù)正切函數(shù)的二倍角公式求出所求直線的斜率,最后根據(jù)點斜式方程得到答案.
試題解析:(1)方法一 設(shè)直線l在x,y軸上的截距均為a,
若a=0,即l過點(0,0)和(3,2),
∴l的方程為y=x,即2x-3y=0.
若a≠0,則設(shè)l的方程為+=1,
∵l過點(3,2),∴+=1,
∴a=5,∴l的方程為x+y-5=0,
綜上可知,直線l的方程為2x-3y=0或x+y-5=0.
方法二由題意知,所求直線的斜率k存在且k≠0,設(shè)直線方程為y-2=k(x-3),
令y=0,得x=3-,令x=0,得y=2-3k,
由已知3-=2-3k,
解得k=-1或k=,
∴直線l的方程為:y-2=-(x-3)或y-2= (x-3),
即x+y-5=0或2x-3y=0.
(2)由已知:設(shè)直線y=3x的傾斜角為α,
則所求直線的傾斜角為2α.
∵tan α=3,∴tan 2α==-.
又直線經(jīng)過點A(-1,-3),
因此所求直線方程為y+3=- (x+1),
即3x+4y+15=0.
科目:高中數(shù)學 來源: 題型:
【題目】如圖1,在Rt△ABC中,∠ABC=60°,∠BAC=90°,AD是BC邊上的高,沿AD將△ABC折成60°的二面角B-AD-C,如圖2.
(1)證明:平面ABD⊥平面BCD;
(2)設(shè)E為BC的中點,BD=2,求異面直線AE與BD所成的角的大小.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在平面直角坐標系中,記二次函數(shù)()與兩坐標軸有三個交點,其中與x軸的交點為A,B.經(jīng)過三個交點的圓記為.
(1)求圓的方程;
(2)設(shè)P為圓上一點,若直線PA,PB分別交直線于點M,N,則以MN為直徑的圓是否經(jīng)過線段AB上一定點?請證明你的結(jié)論.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù).
(1)若,求的極值和單調(diào)區(qū)間;
(2)若在區(qū)間上至少存在一點,使得成立,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】下列四個命題中,假命題是_________ (填序號).
①經(jīng)過定點P(x0,y0)的直線不一定都可以用方程y-y0=k(x-x0)表示;
②經(jīng)過兩個不同的點P1(x1,y1)、P2(x2,y2)的直線都可以用
方程(y-y1)(x2-x1)=(x-x1)(y2-y1)來表示;
③與兩條坐標軸都相交的直線不一定可以用方程表示;
④經(jīng)過點Q(0,b)的直線都可以表示為y=kx+b.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】眾所周知,乒乓球是中國的國球,乒乓球隊內(nèi)部也有著很嚴格的競爭機制,為了參加國際大賽,種子選手甲與三位非種子選手乙、丙、丁分別進行一場內(nèi)部對抗賽,按以往多次比賽的統(tǒng)計,甲獲勝的概率分別為,,,且各場比賽互不影響.
(1)若甲至少獲勝兩場的概率大于,則甲入選參加國際大賽參賽名單,否則不予入選,問甲是否會入選最終的大名單?
(2)求甲獲勝場次的分布列和數(shù)學期望.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com