【題目】如圖,在幾何體ABCDEF中,四邊形ABCD是菱形,BE⊥平面ABCD,DF∥BE,且DF=2BE=2,EF=3.
(1)證明:平面ACF⊥平面BEFD
(2)若二面角A﹣EF﹣C是二面角,求直線AE與平面ABCD所成角的正切值.
【答案】
(1)證明:∵四邊形ABCD是菱形,∴AC⊥BD,
∵BE⊥平面ABCD,∴BE⊥AC,
∴AC⊥平面BEFD,
∵AC平面ACF,∴平面ACF⊥平面BEFD
(2)解:設(shè)AC與BD的交點(diǎn)為O,由(1)得AC⊥BD,
分別以O(shè)A,OB為x軸,y軸,建立空間直角坐標(biāo)系,
∵BE⊥平面ABCD,∴BE⊥BD,
∵DF∥BE,∴DF⊥BD,
∴BD2=EF2﹣(DF﹣BE)2=8,∴BD=2 .
設(shè)OA=a,(a>0),
由題設(shè)得A(a,0,0),C(﹣a,0,0),E(0, ),F(xiàn)(0,﹣ ,2),
設(shè)m=(x,y,z)是平面AEF的法向量,
則 ,取z=2 ,得 =( ),
設(shè) 是平面CEF的一個法向量,
則 ,取 ,得 =(﹣ ,1,2 ),
∵二面角A﹣EF﹣C是直二面角,
∴ =﹣ +9=0,解得a= ,
∵BE⊥平面ABCD,
∴∠BAE是直線AE與平面ABCD所成的角,
∴AB= =2,∴tan .
∴直線AE與平面ABCD所成角的正切值為 .
【解析】(1)推導(dǎo)出AC⊥BD,BE⊥AC,從而AC⊥平面BEFD,由此能證明平面ACF⊥平面BEFD.(2)設(shè)AC與BD的交點(diǎn)為O,分別以O(shè)A,OB為x軸,y軸,建立空間直角坐標(biāo)系,利用向量法能求出直線AE與平面ABCD所成角的正切值.
【考點(diǎn)精析】解答此題的關(guān)鍵在于理解平面與平面垂直的判定的相關(guān)知識,掌握一個平面過另一個平面的垂線,則這兩個平面垂直.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=cos2x,二次函數(shù)g(x)滿足g(0)=4,且對任意的x∈R,不等式﹣3x2﹣2x+3≤g(x)≤4x+6成立,則函數(shù)f(x)+g(x)的最大值為( )
A.5
B.6
C.4
D.7
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】點(diǎn)P在雙曲線 (a>0,b>0)的右支上,其左、右焦點(diǎn)分別為F1、F2 , 直線PF1與以坐標(biāo)原點(diǎn)O為圓心、a為半徑的圓相切于點(diǎn)A,線段PF1的垂直平分線恰好過點(diǎn)F2 , 則該雙曲線的漸近線的斜率為( )
A.±
B.±
C.±
D.±
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知D= ,給出下列四個命題:
P1:(x,y)∈D,x+y+1≥0;
P2:(x,y)∈D,2x﹣y+2≤0;
P3:(x,y)∈D, ≤﹣4;
P4:(x,y)∈D,x2+y2≤2.
其中真命題的是( )
A.P1 , P2
B.P2 , P3
C.P2 , P4
D.P3 , P4
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知a,b,c分別是△ABC的內(nèi)角A,B,C所對的邊,a=2bcosB,b≠c.
(1)證明:A=2B;
(2)若a2+c2=b2+2acsinC,求A.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,長方形的邊AB=2,BC=1,O是AB的中點(diǎn),點(diǎn)P沿著邊BC,CD與DA運(yùn)動,記BOP=x,將動點(diǎn)P到A,B兩點(diǎn)距離之和表示為x的函數(shù)f(x),則圖像大致為()
A.
B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖O是等腰三角形ABC內(nèi)一點(diǎn),圓O與△ABC的底邊BC交于M,N兩點(diǎn),與底邊上的高交于點(diǎn)G,且與AB,AC分別相切于E,F兩點(diǎn).
(1)(I)證明EF//BC
(2)(II)若AG等于圓O半徑,且AE=MN=2,求四邊形EBCF的面積
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(2015·四川)已知函數(shù)f(x)=-2(x+a)lnx+x2-2ax-2a2+a,其中a>0.
(1)設(shè)g(x)是f(x)的導(dǎo)函數(shù),討論g(x)的單調(diào)性;
(2)證明:存在a(0,1),使得f(x)≥0,在區(qū)間(1,+)內(nèi)恒成立,且f(x)=0在(1,+)內(nèi)有唯一解.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com