已知數(shù)列{an}滿足a1=3,an+1anp·3n(n∈N*,p為常數(shù)),a1,a2+6,a3成等差數(shù)列.
(1)求p的值及數(shù)列{an}的通項(xiàng)公式;
(2)設(shè)數(shù)列{bn}滿足bn,證明:bn.

(1)an=3n(2)

解析

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

設(shè)數(shù)列{an}的前n項(xiàng)和為Sn.已知a1=a,an+1=Sn+3n,n∈N*.
(1)設(shè)bn=Sn-3n,求數(shù)列{bn}的通項(xiàng)公式;
(2)若an+1≥an,n∈N*,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知等差數(shù)列的首項(xiàng),公差,且第項(xiàng)、第項(xiàng)、第項(xiàng)分別是等比數(shù)列的第項(xiàng)、第項(xiàng)、第項(xiàng).
(1)求數(shù)列,的通項(xiàng)公式;
(2)若數(shù)列對(duì)任意,均有成立.
①求證:;   ②求

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知為等差數(shù)列,,其前n項(xiàng)和為,若,
(1)求數(shù)列的通項(xiàng);(2)求的最小值,并求出相應(yīng)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知公比不為1的等比數(shù)列的前項(xiàng)和為,,且成等差數(shù)列.
(1)求數(shù)列的通項(xiàng)公式;
(2)設(shè),求數(shù)列的前項(xiàng)和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

設(shè)數(shù)列{bn}滿足bn+2=-bn+1bn(n∈N*),b2=2b1.
(1)若b3=3,求b1的值;
(2)求證數(shù)列{bnbn+1bn+2n}是等差數(shù)列;
(3)設(shè)數(shù)列{Tn}滿足:Tn+1Tnbn+1(n∈N*),且T1b1=-,若存在實(shí)數(shù)pq,對(duì)任意n∈N*都有pT1T2T3+…+Tnq成立,試求qp的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知數(shù)列前n項(xiàng)和=), 數(shù)列為等比數(shù)列,首項(xiàng)=2,公比為q(q>0)且滿足,,為等比數(shù)列.
(1)求數(shù)列的通項(xiàng)公式;
(2)設(shè),記數(shù)列的前n項(xiàng)和為T(mén)n,,求Tn。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

若數(shù)列滿足,則稱(chēng)數(shù)列為“平方遞推數(shù)列”.已知數(shù)列中,,點(diǎn)在函數(shù)的圖象上,其中為正整數(shù).
(Ⅰ)證明數(shù)列是“平方遞推數(shù)列”,且數(shù)列為等比數(shù)列;
(Ⅱ)設(shè)(Ⅰ)中“平方遞推數(shù)列”的前項(xiàng)積為,即,求;
(Ⅲ)在(Ⅱ)的條件下,記,求數(shù)列的前項(xiàng)和,并求使的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

在數(shù)列中,).
(1)求的值;
(2)是否存在常數(shù),使得數(shù)列是一個(gè)等差數(shù)列?若存在,求的值及的通項(xiàng)公式;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案