已知向量
OA
=(3,-4),
OB
=(6,-3),
OC
=(5-m,-(3+m))

(1)若點(diǎn)A、B、C能構(gòu)成三角形,求實(shí)數(shù)m應(yīng)滿足的條件;
(2)若△ABC為直角三角形,且∠A為直角,求實(shí)數(shù)m的值.
分析:(1)根據(jù)三點(diǎn)構(gòu)成三角形的條件,即只要三點(diǎn)不共線,根據(jù)共線的條件確定出m的值,從而解出A、B、C能構(gòu)成三角形時,實(shí)數(shù)m滿足的條件;
(2)將幾何中的角為直角轉(zhuǎn)化為向量的語言,通過向量的數(shù)量積為零列出關(guān)于實(shí)數(shù)m的方程,求解出實(shí)數(shù)m.
解答:解:(1)若點(diǎn)A、B、C能構(gòu)成三角形,則這三點(diǎn)不共線,
AB
=(3,1),
AC
=(2-m,1-m)
,故知3(1-m)≠2-m
∴實(shí)數(shù)m≠
1
2
時,滿足條件.
(2)若△ABC為直角三角形,且∠A為直角,則
AB
AC
,
∴3(2-m)+(1-m)=0
解得m=
7
4
點(diǎn)評:本題考查向量的坐標(biāo)形式的運(yùn)算,考查向量共線與向量垂直的等價條件.關(guān)鍵要將幾何問題通過向量工具解決出來,體現(xiàn)了轉(zhuǎn)化與化歸的思想.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知向量
OA
=(3,-4),
OB
=(6,-3),
OC
=(5-x,-3-y)

(1)若點(diǎn)A,B,C能構(gòu)成三角形,求x,y應(yīng)滿足的條件;
(2)若△ABC為等腰直角三角形,且∠B為直角,求x,y的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知向量
OA
=(3,-4),
OB
=(6,-3),
OC
=(5-m,-3-m)

(1)若A,B,C三點(diǎn)共線,求實(shí)數(shù)m的值;
(2)若∠ABC為銳角,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2010•重慶一模)已知向量
OA
=(3, 2)
,
OB
=(4, 7)
,則
1
2
AB
=
(
1
2
, 
5
2
)
(
1
2
, 
5
2
)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知向量
OA
=(3,-4)
,
OB
=(6,-3)
,
OC
=(5-m,-3-m)

(1)若A,B,C三點(diǎn)共線,求實(shí)數(shù)m的值;
(2)若△ABC是直角三角形,求實(shí)數(shù)m的值;
(3)若∠ABC是銳角,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(理)設(shè)α∈(0,π),函數(shù)f(x)的定義域?yàn)閇0,1],且f(0)=0,f(1)=1,對定義域內(nèi)任意的x,y,滿足f(
x+y
2
)=f(x)sinα+(1-sinα)f(y).
(1)試用α表示f(
1
2
),并在f(
1
2
)時求出α的值;
(2)試用α表示f(
1
4
),并求出α的值;
(3)n∈N時,an=
1
2n
,求f(an),并猜測x∈[0,1]時,f(x)的表達(dá)式.
(文)已知向量
OA
=(3,-4),
OB
=(6,-3),
OC
=(5-m,-3-m)
(1)若點(diǎn)A、B、C不能構(gòu)成三角形,求實(shí)數(shù)m應(yīng)滿足的條件.
(2)若△ABC為直角三角形,求m的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案