精英家教網 > 高中數學 > 題目詳情

(文)已知函數f(x)=x3+ax2-ax-1(a>0),設f′(x)的最小值為-數學公式
(I)求a的值;
(II)求f(x)在[-1,m]上的最大值g(m).

解:(I)∵f(x)=x3+ax2-ax-1(a>0),
∴f′(x)=3x2+2ax-a=3(2-,
∵f′(x)的最小值為-,
∴當時,f′(x)取最小值=,
解得a=1或a=-4(舍)
故a的值為1.…(4分)
(II)f(x)=x3+x2-x-1=(x+1)2(x-1),
f′(x)=3x2+2x-1=(3x-1)(x+1),…(6分)
當x變化時,f′(x)、f(x)的變化如下表:
x(-∞,-1)1(-1,,+∞)
f′(x)+0-0+
f(x)極大值0
極小值

當-1<m<1時,g(m)=f(-1)=0;
當m≥1時,g(m)=f(m)=m3+m2-m-1,
∴g(m)=.…(12分)
分析:(I)f′(x)=3x2+2ax-a=3(2-,當時,f′(x)取最小值=,由此能求出a.
(II)f(x)=x3+x2-x-1=(x+1)2(x-1),f′(x)=3x2+2x-1=(3x-1)(x+1),列表討論能求出f(x)在[-1,m]上的最大值g(m).
點評:本題考查利用導數求函數最值的應用,考查運算求解能力,推理論證能力;考查化歸與轉化思想.對數學思維的要求比較高,有一定的探索性.綜合性強,難度大,是高考的重點.解題時要認真審題,仔細解答.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

精英家教網(文)已知函數f(x)=x3+ax2+bx+2與直線4x-y+5=0切于點P(-1,1).
(Ⅰ)求實數a,b的值;
(Ⅱ)若x>0時,不等式f(x)≥mx2-2x+2恒成立,求實數m的取值范圍.

(理) 已知正四棱柱ABCD-A1B1C1D1底面邊長AB=2,側棱BB1的長為4,過點B作B1C的垂線交側棱CC1于點E,交線段B1C于點F.以D為原點,DA、DC、DD1所在直線分別為x、y、z軸建立空間直角坐標系D-xyz,如圖.
(Ⅰ)求證:A1C⊥平面BED;
(Ⅱ)求A1B與平面BDE所成角的正弦值的大。

查看答案和解析>>

科目:高中數學 來源: 題型:

(文)已知函數f(x)=ax3-bx2+9x+2,若f(x)在x=1處的切線方程是3x+y-6=0.
(1)求f(x)的解析式及單調區(qū)間;
(2)若對于任意的x∈[
14
,2]
,都有f(x)≥t2-2t-1成立,求函數g(t)=t2+t-2的最小值及最大值.

查看答案和解析>>

科目:高中數學 來源: 題型:

(文)已知函數f(x)=x2lnx.
(I)求函數f(x)的單調區(qū)間;
(II)若b∈[-2,2]時,函數h(x)=
1
3
x3lnx-
1
9
x3-(2a+b)x
,在(1,2)上為單調遞減函數.求實數a的范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

(文)已知函數f(x)=x3-x.
(I)求曲線y=f(x)在點M(t,f(t))處的切線方程;
(II)設常數a>0,如果過點P(a,m)可作曲線y=f(x)的三條切線,求m的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

(文)已知函數f(x)=2sinx+3tanx.項數為27的等差數列{an}滿足an∈(-
π
2
,
π
2
)
,且公差d≠0.若f(a1)+f(a2)+…+f(a27)=0,則當k值為
13
13
時有f(ak)=0.

查看答案和解析>>

同步練習冊答案