銷售甲、乙兩種商品所得利潤分別是y1、y2萬元,它們與投入資金x萬元的關(guān)系分別為y1=m
x+1
+a
,y2=bx,(其中m,a,b都為常數(shù)),函數(shù)y1,y2對(duì)應(yīng)的曲線C1、C2如圖所示.
(1)求函數(shù)y1、y2的解析式;
(2)若該商場一共投資4萬元經(jīng)銷甲、乙兩種商品,求該商場所獲利潤的最大值.
分析:(1)根據(jù)所給的圖象知,兩曲線的交點(diǎn)坐標(biāo)為(8,
5
8
)
,由此列出關(guān)于m,a的方程組,解出m,a的值,即可得到函數(shù)y1、y2的解析式;
(2)對(duì)甲種商品投資x(萬元),對(duì)乙種商品投資(4-x)(萬元),根據(jù)公式可得甲、乙兩種商品的總利潤y(萬元)關(guān)于x的函數(shù)表達(dá)式;再利用配方法確定函數(shù)的對(duì)稱軸,結(jié)合函數(shù)的定義域,即可求得總利潤y的最大值.
解答:解:(1)由題意
m+a=0
3m+a=
8
5
,解得m=
4
5
,a=-
4
5
y1=
4
5
x+1
-
4
5
,(x≥0)
…(4分)
又由題意8b=
8
5
b=
1
5
y2=
1
5
x
(x≥0)…(7分)
(不寫定義域扣一分)
(2)設(shè)銷售甲商品投入資金x萬元,則乙投入(4-x)萬元
由(1)得y=
4
5
x+1
-
4
5
+
1
5
(4-x)
,(0≤x≤4)…(10分)
x+1
=t,(1≤t≤
5
)
,則有y=-
1
5
t2+
4
5
t+
1
5
=-
1
5
(t-2)2+1
,(1≤t≤
5
)
,
當(dāng)t=2即x=3時(shí),y取最大值1.
答:該商場所獲利潤的最大值為1萬元.…(14分)
(不答扣一分)
點(diǎn)評(píng):本題考查了函數(shù)模型的構(gòu)建以及換元法、配方法求函數(shù)的最值,體現(xiàn)用數(shù)學(xué)知識(shí)解決實(shí)際問題,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

有甲、乙兩種商品,經(jīng)營銷售這兩種商品所能獲得的利潤依次是P(萬元)和Q(萬元),它們與投入資金x(萬元)的關(guān)系有經(jīng)驗(yàn)公式:P=
x
5
,Q=
3
5
x
.今有3萬元資金投入經(jīng)營甲、乙兩種商品,為獲得最大利潤,對(duì)甲、乙兩種商品的資金投入分別應(yīng)為多少?能獲得最大利潤是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

有甲、乙兩種商品,經(jīng)營銷售這兩種商品所能獲得的利潤依次為Q1萬元和Q2萬元,它們與投入資金的關(guān)系是Q1=0.4x,Q2=-0.2x2+1.6x,今有10萬元資金投入經(jīng)營甲、乙兩種商品,為獲得最大利潤,對(duì)甲、乙兩種商品的資金投入應(yīng)分別為多少?并求最大利潤是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

銷售甲、乙兩種商品所得利潤分別是y1、y2萬元,它們與投入資金x萬元的關(guān)系分別為數(shù)學(xué)公式,y2=bx,(其中m,a,b都為常數(shù)),函數(shù)y1,y2對(duì)應(yīng)的曲線C1、C2如圖所示.
(1)求函數(shù)y1、y2的解析式;
(2)若該商場一共投資4萬元經(jīng)銷甲、乙兩種商品,求該商場所獲利潤的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年江蘇省泰州市高一(上)期末數(shù)學(xué)試卷(解析版) 題型:解答題

銷售甲、乙兩種商品所得利潤分別是y1、y2萬元,它們與投入資金x萬元的關(guān)系分別為,y2=bx,(其中m,a,b都為常數(shù)),函數(shù)y1,y2對(duì)應(yīng)的曲線C1、C2如圖所示.
(1)求函數(shù)y1、y2的解析式;
(2)若該商場一共投資4萬元經(jīng)銷甲、乙兩種商品,求該商場所獲利潤的最大值.

查看答案和解析>>

同步練習(xí)冊(cè)答案