定義在R上的函數(shù)滿足:,且對(duì)于任意的,都有,則不等式的解集為           .
(0,2)

試題分析:設(shè)g(x)=f(x)-x,∵f′(x)<,∴g′(x)=f′(x)-<0,∴g(x)為減函數(shù),又f(1)=1,∴f(log2x)>,即g(log2x)=f(log2x)-log2x>=g(1)=f(1)-=g(log22),∴l(xiāng)og2x<log22,又y=log2x為底數(shù)是2的增函數(shù),∴0<x<2,則不等式的解集為(0,2).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

某出版社新出版一本高考復(fù)習(xí)用書,該書的成本為5元/本,經(jīng)銷過(guò)程中每本書需付給代理商m元(1≤m≤3)的勞務(wù)費(fèi),經(jīng)出版社研究決定,新書投放市場(chǎng)后定價(jià)為元/本(9≤≤11),預(yù)計(jì)一年的銷售量為萬(wàn)本.
(1)求該出版社一年的利潤(rùn)(萬(wàn)元)與每本書的定價(jià)的函數(shù)關(guān)系式;
(2)當(dāng)每本書的定價(jià)為多少元時(shí),該出版社一年的利潤(rùn)最大,并求出的最大值

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

設(shè)的導(dǎo)數(shù)為,若函數(shù)的圖象關(guān)于直線對(duì)稱,且函數(shù)處取得極值.
(I)求實(shí)數(shù)的值;
(II)求函數(shù)的單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知函數(shù)
(1)當(dāng)時(shí),求函數(shù)的單調(diào)區(qū)間;
(2)當(dāng)函數(shù)自變量的取值區(qū)間與對(duì)應(yīng)函數(shù)值的取值區(qū)間相同時(shí),這樣的區(qū)間稱為函數(shù)的保值區(qū)間.,試問(wèn)函數(shù)上是否存在保值區(qū)間?若存在,請(qǐng)求出一個(gè)保值區(qū)間;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知函數(shù)
(Ⅰ)若,求的極大值;
(Ⅱ)若在定義域內(nèi)單調(diào)遞減,求滿足此條件的實(shí)數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

函數(shù)f(x)=x2-ln x的單調(diào)遞減區(qū)間為 (  ).
A.(-1,1]B.(0,1]
C.[1,+∞)D.(0,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

已知函數(shù)在區(qū)間上是增函數(shù),則實(shí)數(shù)的取值范圍是   

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

已知函數(shù)在(0, 1)上不是單調(diào)函數(shù),則實(shí)數(shù)的取值范圍為   _____.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

若函數(shù)上單調(diào)遞增,那么實(shí)數(shù)的取值范圍是(  )
A.B.C.D.

查看答案和解析>>

同步練習(xí)冊(cè)答案