【題目】已知函數(shù)

(Ⅰ)求證:對于任意,不等式恒成立;

(Ⅱ)設函數(shù),求函數(shù)的最小值.

【答案】(Ⅰ)證明見解析;(Ⅱ)0.

【解析】

I)證明不等式恒成立,轉化為證明,構造新函數(shù),利用導數(shù)研究函數(shù)的單調性,即可求解;

(Ⅱ)當時,由(Ⅰ)知 ,要證,只需證,構造新函數(shù),利用導數(shù)研究函數(shù)的單調性與極值,即可求解.

(Ⅰ)由題意,對于任意,要證,只需證,

,則,

,則,所以上單調遞增,

所以,即,所以上單調遞增,

所以,

故不等式恒成立.

(Ⅱ)當時,由(Ⅰ)知 ,

要證:,只需證,

,則,

,則,

所以函數(shù)上單調遞增,所以,即

所以上單調遞增,可得

所以,所以得證,

,即,所以,

,所以當時,,且時,等號成立,

的最小值為0

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】在極坐標系中,曲線C的極坐標方程為.以極點為原點,極軸為x軸的正半軸建立平面直角坐標系,直線l的參數(shù)方程為 (t為參數(shù))

(1)若,求曲線C的直角坐標方程以及直線l的極坐標方程;

(2)設點,曲線C與直線 交于A、B兩點,求的最小值

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設首項為a1的正項數(shù)列{an}的前n項和為Sn,q為非零常數(shù),已知對任意正整數(shù)nm,Sn+mSm+qmSn總成立.

1)求證:數(shù)列{an}是等比數(shù)列;

2)若不等的正整數(shù)m,kh成等差數(shù)列,試比較ammahhak2k的大;

3)若不等的正整數(shù)mk,h成等比數(shù)列,試比較的大小.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】假設存在兩個物種,前者有充足的食物和生存空間,而后者僅以前者為食物,則我們稱前者為被捕食者,后者為捕食者.現(xiàn)在我們來研究捕食者與被捕食者之間理想狀態(tài)下的數(shù)學模型.假設捕食者的數(shù)量以表示,被捕食者的數(shù)量以表示.如圖描述的是這兩個物種隨時間變化的數(shù)量關系,其中箭頭方向為時間增加的方向.下列說法正確的是( )

A.若在、時刻滿足:,則

B.如果數(shù)量是先上升后下降的,那么的數(shù)量一定也是先上升后下降

C.被捕食者數(shù)量與捕食者數(shù)量不會同時到達最大值或最小值

D.被捕食者數(shù)量與捕食者數(shù)量總和達到最大值時,被捕食者的數(shù)量也會達到最大值

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=

(e為自然對數(shù)的底數(shù)),則f(e)=________,函數(shù)yf(f(x))-1的零點個數(shù)為________.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖在三棱錐中,均為等腰三角形,且,

1)判斷是否成立?并給出證明;

2)求直線與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】關于的不等式,對于恒成立,則實數(shù)的取值范圍是________.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)fx)=xlnx,函數(shù)gx)=kxcosx在點處的切線平行于x.

1)求函數(shù)fx)的極值;

2)討論函數(shù)Fx)=gx)﹣fx)的零點的個數(shù).

查看答案和解析>>

同步練習冊答案