【題目】已知函數(shù)=x2lnx-a(x2-1)(a∈R),若≥0在x∈(0,1] 時恒成立,則實數(shù)a的取值范圍是
A. [,+ ∞) B. [,+∞) C. [2,+∞) D. [1,+∞)
【答案】B
【解析】分析:首先將式子化簡,將參數(shù)化為關于的函數(shù),之后將問題轉(zhuǎn)化為求最值問題來解決,之后應用導數(shù)研究函數(shù)的單調(diào)性,從而求得函數(shù)的最值,在求解的過程中,注意對函數(shù)進行簡化,最后用洛必達法則,通過極限求得結(jié)果.
詳解:根據(jù)題意,有恒成立,當時,將其變形為恒成立,即,令,利用求得法則及求導公式可求得,令,可得,可得,因為,所以時,,時,,所以函數(shù)在時單調(diào)減,在時單調(diào)增,即,而,所以在上是減函數(shù),且,所以函數(shù)在區(qū)間上滿足恒成立,同理也可以確定在上也成立,即在上恒成立,即在上單調(diào)增,且,故所求的實數(shù)的取值范圍是,故選B.
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)(為常數(shù)).
(1)討論函數(shù)的單調(diào)性;
(2)若函數(shù)在內(nèi)有極值,試比較與的大小,并證明你的結(jié)論.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】蹴鞠起源于春秋戰(zhàn)國,是現(xiàn)代足球的前身.到了唐代,制作的蹴鞠已接近于現(xiàn)代足球,做法是:用八片鞣制好的尖皮縫制成“圓形”的球殼,在球殼內(nèi)放一個動物膀胱,“噓氣閉而吹之”,成為充氣的球.如圖所示,將八個全等的正三角形縫制成一個空間幾何體,在幾何體內(nèi)放一個氣球,往氣球內(nèi)充氣使幾何體膨脹,當幾何體膨脹成球體(頂點位置不變)且恰好是原幾何體外接球時,測得球的體積是,則正三角形的邊長為( )
A.B.C.D.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,某同學在素質(zhì)教育基地通過自己設計、選料、制作,打磨出了一個作品,作品由三根木棒,,組成,三根木棒有相同的端點(粗細忽略不計),且四點在同一平面內(nèi),,,木棒可繞點O任意旋轉(zhuǎn),設BC的中點為D.
(1)當時,求OD的長;
(2)當木棒OC繞點O任意旋轉(zhuǎn)時,求AD的長的范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】甲、乙、丙三家企業(yè)產(chǎn)品的成本分別為10000,12000,15000,其成本構成如下圖所示,則關于這三家企業(yè)下列說法錯誤的是( )
A.成本最大的企業(yè)是丙企業(yè)B.費用支出最高的企業(yè)是丙企業(yè)
C.支付工資最少的企業(yè)是乙企業(yè)D.材料成本最高的企業(yè)是丙企業(yè)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】 已知函數(shù)f(x)=|x+a|+|x-2|.
(1)當a=-3時,求不等式f(x)≥3的解集;
(2)若f(x)≤|x-4|的解集包含[1,2],求a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】(題文)(題文)已知橢圓的離心率為,過右焦點且斜率為1的直線交橢圓于A,B兩點, N為弦AB的中點,O為坐標原點.
(1)求直線ON的斜率;
(2)求證:對于橢圓上的任意一點M,都存在,使得成立.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】三國時期吳國的數(shù)學家趙爽曾創(chuàng)制了一幅“勾股圓方圖”,用數(shù)形結(jié)合的方法給出了勾股定理的詳細證明.如圖所示的“勾股圓方圖”中,四個全等的直角三角形與中間的小正方形拼成一個大正方形,其中一個直角三角形中較小的銳角滿足,現(xiàn)向大正方形內(nèi)隨機投擲一枚飛鏢,則飛鏢落在小正方形內(nèi)的概率是( )
A.B.
C.D.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com