【題目】已知函數(shù).
(1)求函數(shù)的單調(diào)區(qū)間;
(2)若在上存在一點,使得成立,求的取值范圍.
【答案】(1)當(dāng)時, 在上單調(diào)遞減,在上單調(diào)遞增,當(dāng)時, 的上單調(diào)遞增.(2)或.
【解析】試題分析:(1)先求函數(shù)導(dǎo)數(shù),并因式分解,安裝導(dǎo)函數(shù)是否變號進(jìn)行分類討論:當(dāng)時,導(dǎo)函數(shù)不變號,在定義區(qū)間上單調(diào)遞增;當(dāng)時,導(dǎo)函數(shù)由負(fù)變正,單調(diào)性先減后增(2)構(gòu)造差函數(shù),結(jié)合(1)討論單調(diào)性,確定對應(yīng)最小值,解出對應(yīng)的取值范圍.
試題解析:解:(1),定義域為,
.
①當(dāng),即時,令, ∵,∴,
令, ∵, ∴;
②當(dāng),即時, 恒成立,
綜上,當(dāng)時, 在上單調(diào)遞減,在上單調(diào)遞增,
當(dāng)時, 的上單調(diào)遞增.
(2)由題意可知,在上存在一點,使得成立,
即在上存在一點,使得,
即函數(shù)在上的最小值.
由(1)知,①當(dāng),即時, 在上單調(diào)遞減,
∴, ∴,
∵, ∴;
②當(dāng),即時, 在上單調(diào)遞增, ∴, ∴;
③當(dāng),即時, ∴,
∵, ∴, ∴,
此時不存在使成立,
綜上可得的取值范圍是或.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的兩個焦點分別為點是橢圓上任意一點,且的最大值為4,橢圓的離心率與雙曲線的離心率互為倒數(shù).
(1)求橢圓方程;
(2)設(shè)點,過點作直線與圓相切且分別交橢圓于,求直線的斜率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)數(shù)列的前n項和為,已知,,.
(1)證明:為等比數(shù)列,求出的通項公式;
(2)若,求的前n項和,并判斷是否存在正整數(shù)n使得成立?若存在求出所有n值;若不存在說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】拉丁舞,又稱拉丁風(fēng)情舞或自由社交舞,它是拉丁人民在漫長的歷史長河中形成的,包含倫巴、恰恰、牛仔舞、桑巴、斗牛舞、深受人民的喜愛.某藝術(shù)培訓(xùn)機(jī)構(gòu)為了調(diào)查本校學(xué)院對拉丁舞的學(xué)習(xí)情況,分別在剛學(xué)習(xí)了一個季度的本校大班(8歲以下)及種子班(8歲以上)的學(xué)員中各隨機(jī)抽取了15名學(xué)員進(jìn)行摸底考試,這30名學(xué)員考試成績的莖葉圖如圖所示.
規(guī)定:成績不低于85分,則認(rèn)為成績優(yōu)秀;成績低于85分,則認(rèn)為成績一般.
(1)根據(jù)上述數(shù)據(jù)填寫下列2×2聯(lián)表:
成績優(yōu)秀 | 成績一般 | 總計 | |
大班 | |||
種子班 | |||
總計 |
判斷是否有95%的把握認(rèn)為成績優(yōu)秀或成績一般與學(xué)員的年齡有關(guān);
(2)在大班及種子班的參加摸底考試且成績優(yōu)秀的學(xué)員中以分層抽樣的方式抽取6名學(xué)員進(jìn)行特別集訓(xùn),集訓(xùn)后,再對這6名學(xué)員進(jìn)行測試,按測試成績,取前3名授予“舞蹈小精靈”稱號,在被授予“舞蹈小精靈”稱號的學(xué)員中,求種子班的學(xué)員恰好有2人的概率.
參考公式及數(shù)據(jù):,.
0.100 | 0.050 | 0.025 | 0.010 | |
2.706 | 3.841 | 5.024 | 6.635 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】把編號為1,2,3,4,5的五個大小、形狀相同的小球,隨機(jī)放入編號為1,2,3,4,5的五個盒子里.每個盒子里放入一個小球.
(1)求恰有兩個球的編號與盒子的編號相同的概率;
(2)設(shè)恰有個小球的編號與盒子編號相同,求隨機(jī)變量的分布列與期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某城市為了解游客人數(shù)的變化規(guī)律,提高旅游服務(wù)質(zhì)量,收集并整理了2017年1月至2019年12月期間月接待游客量(單位:萬人)的數(shù)據(jù),繪制了下面的折線圖.根據(jù)該折線圖,下列結(jié)論正確的是( )
A.年接待游客量逐年增加
B.各年的月接待游客量高峰期大致在8月
C.2017年1月至12月月接待游客量的中位數(shù)為30
D.各年1月至6月的月接待游客量相對于7月至12月,波動性更小,變化比較平穩(wěn)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系中,曲線的參數(shù)方程為(為參數(shù)),以原點為極點,以軸正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為,.
(1)當(dāng)時,判斷曲線與曲線的位置關(guān)系;
(2)當(dāng)曲線上有且只有一點到曲線的距離等于時,求曲線上到曲線距離為的點的坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】湖南省會城市長沙又稱星城,是楚文明和湖湘文化的發(fā)源地,是國家首批歷史文化名城.城內(nèi)既有岳麓山、橘子洲等人文景觀,又有岳麓書院、馬王堆漢墓等名勝古跡,每年都有大量游客來長沙參觀旅游.為合理配置旅游資源,管理部門對首次來岳麓山景區(qū)游覽的游客進(jìn)行了問卷調(diào)查,據(jù)統(tǒng)計,其中的人計劃只游覽岳麓山,另外的人計劃既游覽岳麓山又參觀馬王堆.每位游客若只游覽岳麓山,則記1分;若既游覽岳麓山又參觀馬王堆,則記2分.假設(shè)每位首次來岳麓山景區(qū)游覽的游客計劃是否參觀馬王堆相互獨立,視頻率為概率.
(1)從游客中隨機(jī)抽取3人,記這3人的合計得分為,求的分布列和數(shù)學(xué)期望;
(2)從游客中隨機(jī)抽取人(),記這人的合計得分恰為分的概率為,求;
(3)從游客中隨機(jī)抽取若干人,記這些人的合計得分恰為分的概率為,隨著抽取人數(shù)的無限增加,是否趨近于某個常數(shù)?若是,求出這個常數(shù);若不是,說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com