【題目】如圖,某廣場中間有一塊邊長為2百米的菱形狀綠化區(qū)ABCD,其中BMN是半徑為1百米的扇形,∠ABC= .管理部門欲在該地從M到D修建小路:在 上選一點(diǎn)P(異于M,N兩點(diǎn)),過點(diǎn)P修建與BC平行的小路PQ.
(1)若∠PBC= ,求PQ的長度;
(2)當(dāng)點(diǎn)P選擇在何處時,才能使得修建的小路 與PQ及QD的總長最。坎⒄f明理由.
【答案】
(1)解.如圖示:
,
連接BP,過P作PP1⊥BC,垂足為P1,過Q作QQ1⊥BC垂足為Q1,
在Rt△PBP1中, ,PQ=1
(2)解.設(shè)∠PBP1=θ, ,
∴ ,
在Rt△QBQ1中, ,
∴總路徑長f(θ)= ﹣θ+4﹣cosθ﹣ sinθ,(0<θ< ),
f′(θ)=sinθ﹣ cosθ﹣1=2sin(θ﹣ )﹣1,
令f'(θ)=0, ,
當(dāng) 時,f'(θ)<0,
當(dāng) 時,f'(θ)>0,
所以當(dāng) 時,總路徑最短.
答:當(dāng)BP⊥BC時,總路徑最短
【解析】(1)作出輔助線,根據(jù)梯形的性質(zhì)求出PQ的長即可;(2)設(shè)∠PBP1=θ,求出PQ的長,得到總路徑長f(θ)的表達(dá)式,通過求導(dǎo)得到函數(shù)的單調(diào)性,從而求出去最小值時θ的值,即P點(diǎn)的位置即可.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓C的圓心在直線x﹣2y﹣3=0上,并且經(jīng)過A(2,﹣3)和B(﹣2,﹣5),求圓C的標(biāo)準(zhǔn)方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)、分別是橢圓的左、右焦點(diǎn).
(1)若是該橢圓上的一個動點(diǎn),求的最大值和最小值;
(2)設(shè)過定點(diǎn)的直線與橢圓交于不同的兩點(diǎn)、,且為銳角(其中為坐標(biāo)原點(diǎn)),求直線的斜率的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,A,B,C,D為平面四邊形ABCD的四個內(nèi)角.
(1)證明:tan = ;
(2)若A+C=180°,AB=6,BC=3,CD=4,AD=5,求tan +tan +tan +tan 的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】若f(x)=x﹣1﹣alnx,g(x)= ,a<0,且對任意x1 , x2∈[3,4](x1≠x2),|f(x1)﹣f(x2)|<| ﹣ |的恒成立,則實數(shù)a的取值范圍為 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知曲線C:y2=2x﹣4.
(1)求曲線C在點(diǎn)A(3, )處的切線方程;
(2)過原點(diǎn)O作直線l與曲線C交于A,B兩不同點(diǎn),求線段AB的中點(diǎn)M的軌跡方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線C1:x2=y,圓C2:x2+(y﹣4)2=1的圓心為點(diǎn)M
(1)求點(diǎn)M到拋物線C1的準(zhǔn)線的距離;
(2)已知點(diǎn)P是拋物線C1上一點(diǎn)(異于原點(diǎn)),過點(diǎn)P作圓C2的兩條切線,交拋物線C1于A,B兩點(diǎn),若過M,P兩點(diǎn)的直線l垂直于AB,求直線l的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)數(shù)列{an}的各項均為正數(shù).若對任意的n∈N* , 存在k∈N* , 使得an+k2=anan+2k成立,則稱數(shù)列{an}為“Jk型”數(shù)列.
(1)若數(shù)列{an}是“J2型”數(shù)列,且a2=8,a8=1,求a2n;
(2)若數(shù)列{an}既是“J3型”數(shù)列,又是“J4型”數(shù)列,證明:數(shù)列{an}是等比數(shù)列.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知四邊形是邊長為1的正方形,點(diǎn)、、、順次在邊、、、上,且.過點(diǎn)、、、分別作射線、、、,且,這里為定角,且,由此得到四邊形.
(1)問四邊形是怎樣的四邊形?證明你的結(jié)論.
(2)設(shè),試將表示成的函數(shù).
(3)是否存在,使為與無關(guān)的定值?若存在,求出相應(yīng)的的值;若不存在,說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com