【題目】我國2019年新年賀歲大片《流浪地球》自上映以來引發(fā)了社會(huì)的廣泛關(guān)注,受到了觀眾的普遍好評(píng).假設(shè)男性觀眾認(rèn)為《流浪地球》好看的概率為,女性觀眾認(rèn)為《流浪地球》好看的概率為.某機(jī)構(gòu)就《流浪地球》是否好看的問題隨機(jī)采訪了4名觀眾.

1)若這4名觀眾22女,求這4名觀眾中女性認(rèn)為好看的人數(shù)比男性認(rèn)為好看的人數(shù)多的概率;

2)若這4名觀眾都是男性,設(shè)X表示這4名觀眾中認(rèn)為《流浪地球》好看的人數(shù),求X的分布列與數(shù)學(xué)期望.

【答案】(1);(2).

【解析】

1)設(shè)X表示2名女性觀眾中認(rèn)為好看的人數(shù),Y表示2名男性觀眾中認(rèn)為好看的人數(shù),設(shè)事件A表示“這4名觀眾中女性認(rèn)為好看的人數(shù)比男性認(rèn)為好看的人數(shù)多”,
,利用互斥事件與相互獨(dú)立事件的概率計(jì)算公式即可得出;

(2)由題意知,利用二項(xiàng)分布的性質(zhì)求解即可.

設(shè)表示2名女性觀眾中認(rèn)為好看的人數(shù),表示2名男性觀眾中認(rèn)為好看的人數(shù),

,.

(1)設(shè)事件表示“這4名觀眾中女性認(rèn)為好看的人數(shù)比男性認(rèn)為好看的人數(shù)多”,,

(2)X的可能取值為0,1,2,3,4,

X服從二項(xiàng)分布,

∴X的分布列為:

X

0

1

2

3

4

P

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】(1)求與橢圓有共同焦點(diǎn)且過點(diǎn)的雙曲線的標(biāo)準(zhǔn)方程;

(2)已知拋物線的焦點(diǎn)在軸上,拋物線上的點(diǎn)到焦點(diǎn)的距離等于5,求拋物線的標(biāo)準(zhǔn)方程和的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某校數(shù)學(xué)課外興趣小組為研究數(shù)學(xué)成績是否與性別有關(guān),先統(tǒng)計(jì)本校高三年級(jí)每個(gè)學(xué)生一學(xué)期數(shù)學(xué)成績平均分(采用百分制),剔除平均分在40分以下的學(xué)生后,共有男生300名,女生200名.現(xiàn)采用分層抽樣的方法,從中抽取了100名學(xué)生,按性別分為兩組,并將兩組學(xué)生成績分為6組,得到如下所示頻數(shù)分布表.

分?jǐn)?shù)段

[40,50)

[50,60)

[60,70)

[70,80)

[80,90)

[90,100]

3

9

18

15

6

9

6

4

5

10

13

2

(1)估計(jì)男、女生各自的平均分(同一組數(shù)據(jù)用該組區(qū)間中點(diǎn)值作代表),從計(jì)算結(jié)果看,數(shù)學(xué)成績與性別是否有關(guān);

(2)規(guī)定80分以上為優(yōu)分(含80分),請(qǐng)你根據(jù)已知條件作出2×2列聯(lián)表,并判斷是否有90%以上的把握認(rèn)為“數(shù)學(xué)成績與性別有關(guān)”.

優(yōu)分

非優(yōu)分

合計(jì)

男生

女生

附表及公式:

0.100

0.050

0.010

0.001

k

2.706

3.841

6.635

10.828

.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某校為了診斷高三學(xué)生在市一模考試中文科數(shù)學(xué)備考的狀況,隨機(jī)抽取了50名學(xué)生的市一模數(shù)學(xué)成績進(jìn)行分析,將這些成績分為九組,第一組[60,70),第二組[70,80),……,第九組[140,150],并繪制了如圖所示的頻率分布直方圖.

1)試求出的值并估計(jì)該校文科數(shù)學(xué)成績的眾數(shù)和中位數(shù);

2)現(xiàn)從成績?cè)?/span>[120150]的同學(xué)中隨機(jī)抽取2人進(jìn)行談話,那么抽取的2人中恰好有一人的成績?cè)?/span>[130,140)中的概率是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】甲、乙兩名射擊運(yùn)動(dòng)員一次射擊命中目標(biāo)的概率分別是0.7,0.6,且每次射擊命中與否相互之間沒有影響,求:

1)甲射擊三次,第三次才命中目標(biāo)的概率;

2)甲、乙兩人在第一次射擊中至少有一人命中目標(biāo)的概率;

3)甲、乙各射擊兩次,甲比乙命中目標(biāo)的次數(shù)恰好多一次的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓C 的右焦點(diǎn)為F(2,0),過點(diǎn)F的直線交橢圓于M、N兩點(diǎn)且MN的中點(diǎn)坐標(biāo)為

(Ⅰ)求橢圓C的方程;

(Ⅱ)設(shè)直線l不經(jīng)過點(diǎn)P(0,b)且與C相交于A,B兩點(diǎn),若直線PA與直線PB的斜率的和為1,試判斷直線 l是否經(jīng)過定點(diǎn),若經(jīng)過定點(diǎn),請(qǐng)求出該定點(diǎn);若不經(jīng)過定點(diǎn),請(qǐng)給出理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列說法正確的是( )

A. 命題,都是假命題,則命題“”為真命題.

B. ,函數(shù)都不是奇函數(shù).

C. 函數(shù)的圖像關(guān)于對(duì)稱 .

D. 將函數(shù)的圖像上所有點(diǎn)的橫坐標(biāo)伸長到原來的2倍后得到

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知關(guān)于的二次函數(shù),其中,為實(shí)數(shù),事件函數(shù)在區(qū)間為增函數(shù)”.

1)若為區(qū)間上的整數(shù)值隨機(jī)數(shù),為區(qū)間上的整數(shù)值隨機(jī)數(shù),求事件發(fā)生的概率;

2)若為區(qū)間上的均勻隨機(jī)數(shù),為區(qū)間上的均勻隨機(jī)數(shù),求事件發(fā)生的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知三棱錐的體積為1.在側(cè)棱上取一點(diǎn),使,然后在上取一點(diǎn),使,繼續(xù)在上取一點(diǎn),使,……按上述步驟,依次得到點(diǎn),記三棱錐的體積依次構(gòu)成數(shù)列,數(shù)列的前項(xiàng)和.

1)求數(shù)列的通項(xiàng)公式;

2)記,為數(shù)列的前項(xiàng)和,若不等式對(duì)一切恒成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案