如圖,矩形ABCD和梯形BEFC所在平面互相垂直,BE//CF,BCF=CEF=,AD=,EF=2.
(Ⅰ)求證:AE//平面DCF;
(Ⅱ)當(dāng)AB的長為何值時,二面角A-EF-C的大小為.
(1)見解析;(2).
【解析】由于理科有空間向量的知識,在解決立體幾何試題時就有兩套根據(jù)可以使用,這為考生選擇解題方案提供了方便,但使用空間向量的方法解決立體幾何問題也有其相對的缺陷,那就是空間向量的運算問題,空間向量有三個分坐標(biāo),在進(jìn)行運算時極易出現(xiàn)錯誤,而且空間向量方法證明平行和垂直問題的優(yōu)勢并不明顯,所以在復(fù)習(xí)立體幾何時,不要純粹以空間向量為解題的工具,要注意綜合幾何法的應(yīng)用。(1)只要過點作的平行線即可;(2)由于點是點在平面內(nèi)的射影,只要過點作的垂線即可很容易地作出二面角的平面角,剩下的就是具體的計算問題;蛘呓⒖臻g直角坐標(biāo)系,使用法向量的方法求解。
方法一:(Ⅰ)證明:過點作交于,連結(jié),
可得四邊形為矩形,又為矩形,所以,從而四邊形為平行四邊形,故.因為平面,平面,
所以平面.………6分
(Ⅱ)解:過點作交的延長線于,連結(jié).
由平面平面,,得平面,
從而.所以為二面角的平面角.
在中,因為,,
所以,.又因為,所以,
從而,于是,
因為所以當(dāng)為時,
二面角的大小為………12分
方法二:如圖,以點為坐標(biāo)原點,以和分別作為軸,軸和軸,建立空間直角坐標(biāo)系.設(shè),
則,,,,.
(Ⅰ)證明:,,,
所以,,從而,,
所以平面.因為平面,所以平面平面.
故平面.………6分
(Ⅱ)解:因為,,所以,,從而
解得.所以,.設(shè)與平面垂直,
則,,解得.又因為平面,,所以,
得到.所以當(dāng)為時,二面角的大小為.………12分
科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年寧夏高三第五次月考數(shù)學(xué)理卷 題型:解答題
(本小題滿分12分)
如圖,矩形ABCD和梯形BEFC所在平面互相垂直,BE//CF,BCF=CEF=,AD=,EF=2.
(1)求證:AE//平面DCF;
(2)當(dāng)AB的長為何值時,二面角A-EF-C的大小為.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2010-2011年河北省高二下學(xué)期期中考試?yán)砜茢?shù)學(xué) 題型:解答題
(本小題滿分12分)
如圖,矩形ABCD和梯形BEFC所在平面互相垂直,BE//CF,BCF=CEF=,AD=,EF=2.
(1)求證:AE//平面DCF;
(2)當(dāng)AB的長為何值時,二面角A-EF-C的大小為.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
(Ⅰ)求證:AE//平面DCF;
(Ⅱ)當(dāng)AB的長為何值時,二面角A-EF-C的大小為?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
(浙江卷理18)如圖,矩形ABCD和梯形BEFC所在平面互相垂直,BE//CF,BCF=CEF=,AD=,EF=2。
(Ⅰ)求證:AE//平面DCF;
(Ⅱ)當(dāng)AB的長為何值時,二面角A-EF-C的大小為?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com