19.若?x0∈[1,2],使不等式${x_0}^2-m{x_0}+4>0$成立,則m的取值范圍是(-∞,5).

分析 分離變量可得所以m<$\frac{{x}^{2}+4}{x}$,則?x∈[1,2],使得m<$\frac{{x}^{2}+4}{x}$成立,只需m小于f(x)的最大值,然后構(gòu)造函數(shù),由導(dǎo)數(shù)求其單調(diào)性,可得取值范圍

解答 解:不等式x2-mx+4>0可化為mx<x2+4,
故?x∈[1,2],使得m<$\frac{{x}^{2}+4}{x}$,
記函數(shù)f(x)=$\frac{{x}^{2}+4}{x}$,x∈[1,2],
只需m小于f(x)的最大值,
由f′(x)=1-$\frac{4}{{x}^{2}}$=0,可得x=2,而且當(dāng)x∈[1,2]時(shí),f′(x)<0,f(x)單調(diào)遞減,
故最大值為f(1),又f(1)=5.m的取值范圍是:(-∞,5).
故答案為:(-∞,5).

點(diǎn)評(píng) 本題為參數(shù)范圍的求解,構(gòu)造函數(shù)利用導(dǎo)數(shù)工具求取值范圍是解決問題的工關(guān)鍵,本題要和恒成立區(qū)分,易錯(cuò)求成函數(shù)的最小值.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.下列函數(shù)中,對(duì)于任意的x∈R,滿足條件f(x)+f(-x)=0的函數(shù)是( 。
A.f(x)=x${\;}^{\frac{1}{3}}$B.f(x)=sinxC.f(x)=cosxD.f(x)=log2(x2+1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.執(zhí)行如圖所示的程序框圖,如果輸入的N是5,那么輸出的p是(  )
A.120B.720C.1440D.5040

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.二次函數(shù)y=x2-x-2的圖象如圖所示,則函數(shù)值y<0時(shí)x的取值范圍是( 。
A.x<-1B.x>2C.-1<x<2D.x<-1或x>2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.$\frac{1}{{2}^{2}-1}$+$\frac{1}{{3}^{2}-1}$+$\frac{1}{{4}^{2}-1}$+…+$\frac{1}{(n+1)^{2}-1}$的值為( 。
A.$\frac{n+1}{2(n+2)}$B.$\frac{3}{4}$-$\frac{n+1}{2(n+2)}$C.$\frac{3}{4}$-$\frac{1}{2}$($\frac{1}{n+1}$+$\frac{1}{n+2}$)D.$\frac{3}{2}$-$\frac{1}{n+1}$+$\frac{1}{n+2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.若非零向量$\overrightarrow a$與$\overrightarrow b$滿足:$|\overrightarrow a|=2$,$(\overrightarrow a+\overrightarrow b)•\overrightarrow a=0$,$(2\overrightarrow a+\overrightarrow b)⊥\overrightarrow b$,則$|\overrightarrow b|$=(  )
A.$\frac{{\sqrt{2}}}{2}$B.$\sqrt{2}$C.2D.$2\sqrt{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.函數(shù)$f(x)={({\frac{1}{3}})^x}$在[-1,0]上的最小值是( 。
A.-1B.0C.1D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.已知f(x)是定義在R上的偶函數(shù),當(dāng)x∈[0,+∞)時(shí),f(x)=2x-2,則不等式f(log2x)>0的解集為( 。
A.$(0,\frac{1}{2})∪(2,+∞)$B.$(\frac{1}{2},1)∪(2,+∞)$C.(2,+∞)D.$(\frac{1}{2},1)$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知函數(shù)f(x)=|x-a|,g(x)=ax,(a∈R).
(1)若a=1,求方程f(x)=g(x)的解;
(2)若方程f(x)=g(x)有兩解,求出實(shí)數(shù)a的取值范圍;
(3)若a>0,記F(x)=g(x)f(x),試求函數(shù)y=F(x)在區(qū)間[1,2]上的最大值.

查看答案和解析>>

同步練習(xí)冊(cè)答案