已知各項(xiàng)均不相等的等差數(shù)列{an}的前四項(xiàng)和S4=14,且a1,a3,a7成等比,
(Ⅰ)求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)設(shè)Tn為數(shù)列的前n項(xiàng)和,若λTn≤an+1對一切n∈N*恒成立,求實(shí)數(shù)λ的最大值。
解:(Ⅰ)設(shè)公差為d,
由已知得
聯(lián)立解得d=1或d=0(舍去),
∴a1=2,故an=n+1;
(Ⅱ),
,
∵λTn≤an+1,
,
,
,
∴λ的最大值為12。
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知各項(xiàng)均不相等的等差數(shù)列{an}的前三項(xiàng)和S3=9,且a5是a3和a8的等比中項(xiàng).
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè)Tn為數(shù)列{
1
anan+1
}
的前n項(xiàng)和,若Tn≤λan+1對任意的n∈N*恒成立,求證:λ≥
1
16

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•日照一模)已知各項(xiàng)均不相等的等差數(shù)列{an}的前四項(xiàng)和S4=14,a3是a1,a7的等比中項(xiàng).
(I)求數(shù)列{an}的通項(xiàng)公式;
(II)設(shè)Tn為數(shù)列{
1
anan+1
}
的前n項(xiàng)和,若Tn
1
λ
an+1
對一切n∈N*恒成立,求實(shí)數(shù)λ的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012屆浙江省桐鄉(xiāng)市高級中學(xué)高三10月月考理科數(shù)學(xué) 題型:解答題

(本題滿分15分)已知各項(xiàng)均不相等的等差數(shù)列的前四項(xiàng)和,且成等比.
(Ⅰ)求數(shù)列的通項(xiàng)公式;
(Ⅱ)設(shè)為數(shù)列的前n項(xiàng)和,若對一切恒成立,求實(shí)數(shù)的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年浙江省桐鄉(xiāng)市高三10月月考理科數(shù)學(xué) 題型:解答題

(本題滿分15分)已知各項(xiàng)均不相等的等差數(shù)列的前四項(xiàng)和,且成等比.

(Ⅰ)求數(shù)列的通項(xiàng)公式;

(Ⅱ)設(shè)為數(shù)列的前n項(xiàng)和,若對一切恒成立,求實(shí)數(shù)的最小值.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知各項(xiàng)均不相等的等差數(shù)列{an}的前三項(xiàng)和S3=9,且a5是a3和a8的等比中項(xiàng).
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè)Tn為數(shù)列{
1
anan+1
}
的前n項(xiàng)和,若Tn≤λan+1對任意的n∈N*恒成立,求證:λ≥
1
16

查看答案和解析>>

同步練習(xí)冊答案