已知函數(shù)f(x)=x+sinx(x∈R),且f(y2-2y+3)+f(x2-4x+1)≤0,則當(dāng)y≥1時,
y
x+1
的取值范圍是( 。
A、[
1
4
,
3
4
]
B、[0,
3
4
]
C、[
1
4
,
4
3
]
D、[0,
4
3
]
分析:判斷函數(shù)f(x)的奇偶性和單調(diào)性,將不等式進(jìn)行轉(zhuǎn)化,利用直線和圓的位置關(guān)系,結(jié)合數(shù)形結(jié)合和
y
x+1
的幾何意義即可得到結(jié)論.
解答:解:∵f(x)=x+sinx(x∈R),
∴f(-x)=-x-sinx=-(x+sinx)=-f(x),
即f(x)=x+sinx(x∈R)是奇函數(shù),
∵f(y2-2y+3)+f(x2-4x+1)≤0,
∴f(y2-2y+3)≤-f(x2-4x+1)=f[-(x2-4x+1)],
由f'(x)=1-cosx≥0,
∴函數(shù)單調(diào)遞增.
∴(y2-2y+3)≤-(x2-4x+1),
即(y2-2y+3)+(x2-4x+1)≤0,
∴(y-1)2+(x-2)2≤1,精英家教網(wǎng)
∵y≥1,
∴不等式對應(yīng)的平面區(qū)域為圓心為(2,1),半徑為1的圓的上半部分.
y
x+1
的幾何意義為動點P(x,y)到定點A(-1,0)的斜率的取值范圍.
設(shè)k=
y
x+1
,(k>0)
則y=kx+k,即kx-y+k=0.
當(dāng)直線和圓相切是,圓心到直線的距離d=
|2k-1+k|
1+k2
=
|3k-1|
1+k2
=1

即8k2-6k=0,解得k=
3
4
.此時直線斜率最大.
當(dāng)直線kx-y+k=0.經(jīng)過點B(3,1)時,直線斜率最小,
此時3k-1+k=0,即4k=1,解得k=
1
4
,
1
4
≤k≤
3
4
,
故選:A.
點評:本題主要考查直線和圓的位置關(guān)系的應(yīng)用,函數(shù)奇偶性和單調(diào)性的判斷以及直線斜率的取值范圍,綜合性較強(qiáng),運(yùn)算量較大,利用數(shù)形結(jié)合是解決本題的基本思想.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)已知函數(shù)f(x)=Asin(ωx+φ)(x∈R,A>0,ω>0,|φ|<
π
2
)的部分圖象如圖所示,則f(x)的解析式是( 。
A、f(x)=2sin(πx+
π
6
)(x∈R)
B、f(x)=2sin(2πx+
π
6
)(x∈R)
C、f(x)=2sin(πx+
π
3
)(x∈R)
D、f(x)=2sin(2πx+
π
3
)(x∈R)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•深圳一模)已知函數(shù)f(x)=
1
3
x3+bx2+cx+d
,設(shè)曲線y=f(x)在與x軸交點處的切線為y=4x-12,f′(x)為f(x)的導(dǎo)函數(shù),且滿足f′(2-x)=f′(x).
(1)求f(x);
(2)設(shè)g(x)=x
f′(x)
 , m>0
,求函數(shù)g(x)在[0,m]上的最大值;
(3)設(shè)h(x)=lnf′(x),若對一切x∈[0,1],不等式h(x+1-t)<h(2x+2)恒成立,求實數(shù)t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2011•上海模擬)已知函數(shù)f(x)=(
x
a
-1)2+(
b
x
-1)2,x∈(0,+∞)
,其中0<a<b.
(1)當(dāng)a=1,b=2時,求f(x)的最小值;
(2)若f(a)≥2m-1對任意0<a<b恒成立,求實數(shù)m的取值范圍;
(3)設(shè)k、c>0,當(dāng)a=k2,b=(k+c)2時,記f(x)=f1(x);當(dāng)a=(k+c)2,b=(k+2c)2時,記f(x)=f2(x).
求證:f1(x)+f2(x)>
4c2
k(k+c)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:上海模擬 題型:解答題

已知函數(shù)f(x)=(
x
a
-1)2+(
b
x
-1)2,x∈(0,+∞)
,其中0<a<b.
(1)當(dāng)a=1,b=2時,求f(x)的最小值;
(2)若f(a)≥2m-1對任意0<a<b恒成立,求實數(shù)m的取值范圍;
(3)設(shè)k、c>0,當(dāng)a=k2,b=(k+c)2時,記f(x)=f1(x);當(dāng)a=(k+c)2,b=(k+2c)2時,記f(x)=f2(x).
求證:f1(x)+f2(x)>
4c2
k(k+c)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:深圳一模 題型:解答題

已知函數(shù)f(x)=
1
3
x3+bx2+cx+d
,設(shè)曲線y=f(x)在與x軸交點處的切線為y=4x-12,f′(x)為f(x)的導(dǎo)函數(shù),且滿足f′(2-x)=f′(x).
(1)求f(x);
(2)設(shè)g(x)=x
f′(x)
 , m>0
,求函數(shù)g(x)在[0,m]上的最大值;
(3)設(shè)h(x)=lnf′(x),若對一切x∈[0,1],不等式h(x+1-t)<h(2x+2)恒成立,求實數(shù)t的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案