【題目】我校為了解學(xué)生喜歡通用技術(shù)課程“機(jī)器人制作”是否與學(xué)生性別有關(guān),采用簡單隨機(jī)抽樣的辦法在我校高一年級(jí)抽出一個(gè)有60人的班級(jí)進(jìn)行問卷調(diào)查,得到如下的列聯(lián)表:
喜歡 | 不喜歡 | 合計(jì) | |
男生 | 18 | ||
女生 | 6 | ||
合計(jì) | 60 |
已知從該班隨機(jī)抽取1人為喜歡的概率是.
(Ⅰ)請(qǐng)完成上面的列聯(lián)表;
(Ⅱ)根據(jù)列聯(lián)表的數(shù)據(jù),若按90%的可靠性要求,能否認(rèn)為“喜歡與否和學(xué)生性別有關(guān)”?請(qǐng)說明理由.
參考臨界值表:
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
參考公式:其中
【答案】(Ⅰ)見解析(Ⅱ)有90%的可靠性認(rèn)為“喜歡與否和學(xué)生性別有關(guān)”
【解析】
(I)根據(jù)“從該班隨機(jī)抽取1人為喜歡的概率是”,求得喜歡為人,由此填寫出表格缺少的數(shù)據(jù).(II)計(jì)算,由此可以判斷出有90%的可靠性認(rèn)為“喜歡與否和學(xué)生性別有關(guān)”.
解:(Ⅰ)列聯(lián)表如下;
喜歡 | 不喜歡 | 合計(jì) | |
男生 | 14 | 18 | 32 |
女生 | 6 | 22 | 28 |
合計(jì) | 20 | 40 | 60 |
(Ⅱ)根據(jù)列聯(lián)表數(shù)據(jù),得到
所以有90%的可靠性認(rèn)為“喜歡與否和學(xué)生性別有關(guān)”.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),.
(1)當(dāng)時(shí),求曲線在點(diǎn)處的切線方程;
(2)求函數(shù)f(x)的極值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某醫(yī)院一天派出醫(yī)生下鄉(xiāng)醫(yī)療,派出醫(yī)生人數(shù)及其概率如下:
醫(yī)生人數(shù) | 0 | 1 | 2 | 3 | 4 | 5人及以上 |
概率 | 0.1 | 0.16 | 0.3 | 0.2 | 0.2 | 0.04 |
求:(1)派出醫(yī)生至多2人的概率;
(2)派出醫(yī)生至少2人的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】甲、乙兩位學(xué)生參加數(shù)學(xué)競賽培訓(xùn),在培訓(xùn)期間,他們參加的5項(xiàng)預(yù)賽成績記錄如下:
(1)用莖葉圖表示這兩組數(shù)據(jù);
(2)從甲、乙兩人的成績中各隨機(jī)抽取一個(gè),求甲的成績比乙高的概率;
(3)現(xiàn)要從中選派一人參加數(shù)學(xué)競賽,從統(tǒng)計(jì)學(xué)的角度考慮,你認(rèn)為選派哪位學(xué)生參加合適?說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(12分)
在平面直角坐標(biāo)系中,點(diǎn)到點(diǎn)的距離之和為4.
(1)試求點(diǎn)A的M的方程.
(2)若斜率為的直線l與軌跡M交于C,D兩點(diǎn),為軌跡M上不同于C,D的一點(diǎn),記直線PC的斜率為,直線PD的斜率為,試問是否為定值.若是,求出該定值;若不同,請(qǐng)說出理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)在一個(gè)周期內(nèi)的簡圖如圖所示,則函數(shù)的解析式為___________,方程的實(shí)根個(gè)數(shù)為__________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)=Asin(A>0,>0,<≤)在處取得最大值2,其圖象與x軸的相鄰兩個(gè)交點(diǎn)的距離為。
(1)求的解析式;
(2)求函數(shù) 的值域。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】以平面直角坐標(biāo)系的原點(diǎn)為極點(diǎn),軸的正半軸為極軸,建立極坐標(biāo)系,兩種坐標(biāo)系中取相同的長度單位,直線的參數(shù)方程為(是參數(shù)),圓的極坐標(biāo)方程為.
(Ⅰ)求直線的普通方程與圓的直角坐標(biāo)方程;
(Ⅱ)設(shè)曲線與直線的交于,兩點(diǎn),若點(diǎn)的直角坐標(biāo)為,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知是奇函數(shù)(e為自然對(duì)數(shù)的底數(shù)).
(1)求實(shí)數(shù)a的值;
(2)求函數(shù)在上的值域;
(3)令,求不等式的解集.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com